Machine Learning: Clustering & Retrieval机器学习之聚类和信息检索(框架)

Case Studies: Finding Similar Documents
Learning Outcomes:  By the end of this course, you will be able to:(通过本章的学习,你将掌握)
   -Create a document retrieval system using k-nearest neighbors.用K近邻构建文本检索系统
   -Identify various similarity metrics for text data.文本相似性矩阵
   -Reduce computations in k-nearest neighbor search by using KD-trees.使用KD树降低k近邻搜索计算复杂度
   -Produce approximate nearest neighbors using locality sensitive hashing.基于局部敏感哈希生成最近邻
   -Compare and contrast supervised and unsupervised learning tasks.比对监督和无监督学习任务
   -Cluster documents by topic using k-means.基于k均值的文档话题聚类
   -Describe how to parallelize k-means using MapReduce.使用MapReduce并行化k均值
   -Examine probabilistic clustering approaches using mixtures models.混合模型聚类
   -Fit a mixture of Gaussian model using expectation maximization (EM).使用EM拟合高斯混合模型
   -Perform mixed membership modeling using latent Dirichlet allocation (LDA).基于LDA的
   -Describe the steps of a Gibbs sampler and how to use its output to draw inferences.Gibbs抽样
   -Compare and contrast initialization techniques for non-convex optimization objectives.比对非凸优化技术
   -Implement these techniques in Python用Python实现以上内容

========================================================================================================
                       ############chapter2:Nearest Neighbor Search#############
========================================================================================================
Introduction to nearest neighbor search and algorithms近邻搜索和算法介绍
The importance of data representations and distance metrics数据表示和距离度量的重要性
Programming Assignment 1编程任务1
Scaling up k-NN search using KD-trees基于KD树实现k近邻搜索
Locality sensitive hashing for approximate NN search基于局部敏感哈希实现近邻搜索
Programming Assignment 2编程任务2
Summarizing nearest neighbor search小结

========================================================================================================
                       ############chapter3:Clustering with k-means#############
========================================================================================================
Introduction to clustering聚类简介
Clustering via k-meansk均值聚类
Programming Assignment编程任务
MapReduce for scaling k-means
Summarizing clustering with k-means小结

========================================================================================================
                       ############chapter4:Mixture Models#############
========================================================================================================
Motivating and setting the foundation for mixture models混合模型基础
Mixtures of Gaussians for clustering高斯混合模型
Expectation Maximization (EM) building blocks期望最大化
The EM algorithm EM算法
Summarizing mixture models小结
Programming Assignment 1
Programming Assignment 2

========================================================================================================
      ############chapter5:Mixed Membership Modeling via Latent Dirichlet Allocation#############
========================================================================================================
Introduction to latent Dirichlet allocation LDA介绍
Bayesian inference via Gibbs sampling基于Gibbs抽样的贝叶斯推断
Collapsed Gibbs sampling for LDA LDA的Gibbs抽样
Summarizing latent Dirichlet allocation小结
Programming Assignment
========================================================================================================
              ############chapter6:Hierarchical Clustering & Closing Remarks#############
========================================================================================================
What we‘ve learned
Hierarchical clustering and clustering for time series segmentation层次聚类和基于时间序列分割的聚类
Programming Assignment
Summary and what‘s ahead in the specialization小结

时间: 2024-10-14 00:54:16

Machine Learning: Clustering & Retrieval机器学习之聚类和信息检索(框架)的相关文章

利用Microsoft Azure Machine Learning Studio创建机器学习实例

Microsoft Azure云服务推出机器学习的模块,用户只需上传数据,利用机器学习模块提供的一些算法接口和R语言或别的语言接口,就能利用Microsoft Azure强大的云计算能力来实现自己的机器学习的任务. 本文浅尝了该机器学习模块,参照官方实例和帮助文档,完成了一个简单的应用实例,具体步骤如下. 1.新建workspace 注意,在填写workspace owner,一定要填写一个有效的windows live 账号 进入创建的workspace,界面如下图所示 2.上传数据 数据源:

[Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also

Pattern Recognition And Machine Learning (模式识别与机器学习) 笔记 (1)

By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础.已知一个有限集合 \(\{x_{1}, x_{2},..., x_{n}\}\), 概率分布是用来建立一个模型:\(p(x)\). 这一问题又称作密度估计( density estimation ). 主要内容 1. Binomial and Multinomial distributions 面

【机器学习实战】Machine Learning in Action 代码 视频 项目案例

MachineLearning 欢迎任何人参与和完善:一个人可以走的很快,但是一群人却可以走的更远 Machine Learning in Action (机器学习实战) | ApacheCN(apache中文网) 视频每周更新:如果你觉得有价值,请帮忙点 Star[后续组织学习活动:sklearn + tensorflow] ApacheCN - 学习机器学习群[629470233] 第一部分 分类 1.) 机器学习基础 2.) k-近邻算法 3.) 决策树 4.) 基于概率论的分类方法:朴素

Machine Learning - X. Advice for Applying Machine Learning (Week 6)

http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Advice for Applying Machine Learning对应用机器学习的建议 Deciding What to Try Next决定接下来尝试什么 Evaluating a Hypothesis假设评估 Model Selection and Train_Validation_Te

Machine Learning - XI. Machine Learning System Design

http://blog.csdn.net/pipisorry/article/details/44119187 机器学习Machine Learning - Andrew NG courses学习笔记 Machine Learning System Design机器学习系统设计 Prioritizing What to Work On优先考虑做什么 Error Analysis 错误分析 Error Metrics for Skewed Classes有偏类的错误度量 Trading Off P

Everything You Wanted to Know About Machine Learning

Everything You Wanted to Know About Machine Learning 翻译了理解机器学习的10个重要的观点,加入了自己的理解,这些原则在大部分情况下也许是这样,但是具体问题具体分析才是王道,不加思索的应用只能是一知半解.所以张小龙才说'我说的都是错的'. note by 王犇 1. How Does Machine Learning Work? 一般来说机器学习算法做这三件事情来建立模型: A set of possible models to look th

Attention Please!TWO HUNDREDS OF machine learning turorial summary

Machine Learning The First Column The Second Column Machine Learning 1 从机器学习入手 Machine Learning 2 机器学习很有趣! Machine Learning 3 机器学习规则:ML工程的最佳实践 Machine Learning 4 机器学习速成课程:第一部分 Machine Learning 5 第二部分;伯克利机器学习 Machine Learning 6 第三部分;伯克利机器学习 Machine Le

[Machine Learning] 国外程序员整理的机器学习资源大全

本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3