Vulkan Tutorial 24 Descriptor pool and sets

操作系统:Windows8.1

显卡:Nivida GTX965M

开发工具:Visual Studio 2017


Introduction

描述符布局描述了前一章节讨论过的可以绑定的描述符的类型。在本章节,我们创建描述符集,它将实际指定一个VkBuffer来绑定到一个uniform buffer描述符。

Descriptor pool



描述符集合不能集合创建,它们必须像命令缓冲区一样,从对象池中分配使用。对于描述符集合相当于调用描述符对象池。我们将写一个新的函数createDescriptorPool来配置。

void initVulkan() {
    ...
    createUniformBuffer();
    createDescriptorPool();
    ...
}

...

void createDescriptorPool() {

}

我们首先需要明确我们使用的描述符集合包含哪些描述符类型,并且有多少,这里使用VkDescriptorPoolSize结构体集合。

VkDescriptorPoolSize poolSize = {};
poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSize.descriptorCount = 1;

现在我们只有一个uniform buffer类型的单描述符。对象池大小将被VkDescriptorPoolCreateInfo结构体引用:

VkDescriptorPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = 1;
poolInfo.pPoolSizes = &poolSize;

我们也需要指定最大的描述符集合的分配数量:

poolInfo.maxSets = 1;

该结构体与命令对象池类似,有一些可选项用于决定每个描述符集合是否可以独立管理生命周期:VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT。创建完毕后我们不会进一步使用它,所以我们不需要该flag。在这里设置flags默认值为0

VkDescriptorPool descriptorPool;

...

if (vkCreateDescriptorPool(device, &poolInfo, nullptr, &descriptorPool) != VK_SUCCESS) {
    throw std::runtime_error("failed to create descriptor pool!");
}

添加新的类成员对象保存描述符对象池的句柄,通过调用vkCreateDescriptorPool创建它。描述符对象池应该仅在程序退出的时候销毁,很想其他的绘制资源:

void cleanup() {
    cleanupSwapChain();

    vkDestroyDescriptorPool(device, descriptorPool, nullptr);

    ...
}

Descriptor set



为了分配描述符集合从对象池中,我们需要添加一个createDescriptorSet函数:

void initVulkan() {
    ...
    createDescriptorPool();
    createDescriptorSet();
    ...
}

...

void createDescriptorSet() {

}

描述符集合通过VkDescriptorSetAllocateInfo结构体描述具体的分配。需要指定用于分配的描述符对象池,分配的描述符集合数量,以及基于此的描述符布局:

VkDescriptorSetLayout layouts[] = {descriptorSetLayout};
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = layouts;

添加类成员存储描述符集合的句柄,并使用vkAllocateDescriptorSets分配:

VkDescriptorPool descriptorPool;
VkDescriptorSet descriptorSet;

...

if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS) {
    throw std::runtime_error("failed to allocate descriptor set!");
}

我们不需要明确清理描述符集合,因为它们会在描述符对象池销毁的时候自动清理。调用vkAllocateDescriptorSets会分配一个具有uniform buffer描述符的描述符集合。

描述符集合已经分配了,但是内部的描述符需要配置。描述符需要引用缓冲区,就像uniform buffer描述符,使用VkDescriptorBufferInfo结构体进行配置。该结构体指定缓冲区和描述符内部包含的数据的区域:

VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.buffer = uniformBuffer;
bufferInfo.offset = 0;
bufferInfo.range = sizeof(UniformBufferObject);

描述符的配置更新使用vkUpdateDescriptorSets函数,它需要VkWriteDescriptorSet结构体的数组作为参数。

VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = descriptorSet;
descriptorWrite.dstBinding = 0;
descriptorWrite.dstArrayElement = 0;

前两个字段指定描述符集合更新和绑定的设置。我们为uniform buffer 绑定的索引设定为0。描述符可以是数组,所以我们需要指定要更新的数组索引。在这里没有使用数组,所以简单的设置为0

descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.descriptorCount = 1;

我们在这里再一次指定描述符类型。可以通过数组一次性更新多个描述符,使用dstArrayElement起始索引。descriptorCount字段描述多少描述符需要被更新。

descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.pImageInfo = nullptr; // Optional
descriptorWrite.pTexelBufferView = nullptr; // Optional

最后的字段引用descriptorCount结构体的数组,它配置了实际的描述符。它的类型根据实际需要的三个描述符类型来设定。pBufferInfo字段用于指定描述符引用的缓冲区数据,pImageInfo字段用于指定描述符引用的图像数据,描述符使用pTexelBufferView引用缓冲区视图。我们的描述符是基于缓冲区的,所以我们使用pBufferInfo

vkUpdateDescriptorSets(device, 1, &descriptorWrite, 0, nullptr);

使用vkUpdateDescriptorSets应用实际的更新。它接受两种数组的参数:一个数组是VkWriteDescriptorSet,另一个是VkCopyDescriptorSet。后一个数组可以用于两个描述符之间进行拷贝操作。

Using a descriptor set



我们现在需要更新createCommandBuffers函数,使用cmdBindDescriptorSets将描述符集合绑定到实际的着色器的描述符中:

vkCmdBindDescriptorSets(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);

与顶点和索引缓冲区不同,描述符集合不是图形管线唯一的。因此,我们需要指定是否要将描述符集绑定到图形或者计算管线。下一个参数是描述符所基于的布局。接下来的三个参数指定首个描述符的索引,要绑定的集合的数量以及要绑定的集合的数组。我们稍后回来。最后两个参数指定用于动态描述符的偏移数组。我们在后续的章节中会看到这些。

如果此时运行程序,会看不到任何内容在屏幕上。问题在于,由于我们在投影矩阵中进行了Y-flip操作,所以顶点现在以顺时针顺序而不是逆时针顺序绘制。这导致背面剔除以防止任何背面的集合体被绘制。来到createGraphicsPipeline函数,修改VkPipelineRasterizationStateCreateInfo结构体的frontFace如下:

rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;

运行程序如下:

矩形已经变为正方形,因为投影矩阵现在修正了宽高比。updateUniformData需要考虑屏幕的尺寸大小变化,所以我们不需要重新创建描述符集合在recreateSwapChain中。

Multiple descriptor sets



正如某些结构体和函数调用时候的提示所示,实际上可以绑定多个描述符集合。你需要在管线创建布局的时候为每个描述符集合指定描述符布局。着色器可以引用具体的描述符集合如下:

layout(set = 0, binding = 0) uniform UniformBufferObject { ... }

我们可以使用此功能将每个对象和发生变化的描述符分配到单独的描述符集合中,在这种情况下,可以避免重新绑定大部分描述符,而这些描述符可能会更有效率。

项目代码 GitHub地址。

时间: 2024-12-18 03:35:29

Vulkan Tutorial 24 Descriptor pool and sets的相关文章

Vulkan Tutorial 18 重构交换链

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 现在我们已经成功的在屏幕上绘制出三角形,但是在某些情况下,它会出现异常情况.窗体surface会发生改变,使得交换链不在于其兼容.可能导致这种情况发生的原因之一是窗体的大小变化.我们必须在这个时机重新创建交换链. Recreating the swap chain 添加新的函数recreateSwapChain并调用createSwapChain及依赖于交

Vulkan Tutorial 02 编写Vulkan应用程序框架原型

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 General structure 在上一节中,我们创建了一个正确配置.可运行的的Vulkan应用程序,并使用测试代码进行了测试.本节中我们从头开始,使用如下代码构建一个基于GLFW的Vulkan应用程序原型框架的雏形. #include <vulkan/vulkan.h> #include <iostream> #include <stdexcept>

Vulkan Tutorial 05 物理设备与队列簇

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Selecting a physical device 通过VkInstance初始化Vulkan后,我们需要在系统中查找并选择一个支持我们所需功能的显卡.实际上,我们可以选择任意数量的显卡并同时使用他们,但在本小节中,我们简单的设定选择规则,即将查找到的第一个图形卡作为我们适合的物理设备. 我们添加函数pickPhysicalDevice并在initVulkan函数中调用. vo

Vulkan Tutorial 01 开发环境搭建之Windows

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 相信很多人在开始学习Vulkan开发的起始阶段都会在开发环境的配置上下一些功夫,那么本问将会引导大家快速的完成Vulkan在Windows下的开发环境,并使用几个常用的开发工具库. Vulkan SDK 开发Vulkan应用程序所需的最重要的组件就是SDK.它包括核心头文件.标准的Validation layers及调试工具集.和驱动Loader,如果现在这些关键词不是很明白的话,

Vulkan Tutorial 03 理解Instance

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Creating an instance 与Vulkan打交道,通常的步骤是创建一个intance去初始化Vulkan library.这个instance是您的应用程序与Vulkan库之间的连接桥梁,通常创建过程中,需要向驱动程序提供一些应用层的信息. 首先添加一个createInstance函数,并在initVulkan函数中调用. void initVulkan() { cr

Vulkan Tutorial 04 理解Validation layers

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 What are validation layers? Vulkan API的设计核心是尽量最小化驱动程序的额外开销,所谓额外开销更多的是指向渲染以外的运算.其中一个具体的表现就是默认条件下,Vulkan API的错误检查的支持非常有限.即使遍历不正确的值或者将需要的参数传递为空指针,也不会有明确的处理逻辑,并且直接导致崩溃或者未定义的异常行为.之所以这样,是因为Vulkan要求每

Vulkan Tutorial 06 逻辑设备与队列

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 在选择要使用的物理设备之后,我们需要设置一个逻辑设备用于交互.逻辑设备创建过程与instance创建过程类似,也需要描述我们需要使用的功能.因为我们已经查询过哪些队列簇可用,在这里需要进一步为逻辑设备创建具体类型的命令队列.如果有不同的需求,也可以基于同一个物理设备创建多个逻辑设备. 首先添加一个新的类成员来存储逻辑设备句柄. VkDevice devic

Vulkan Tutorial 27 combined image sampler

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 我们在教程的uniform 缓冲区中首次了解了描述符.在本章节我们会看到一种新的描述符类型:combined image sampler 组合图像取样器.该描述符使着色器可以通过像上一章创建的采样器对象来访问图像资源. 我们将首先修改描述符布局,描述符对象池和描述符集合,以包括这样一个组合的图像采样器描述符.完成之后,我们会添加纹理贴图坐标到Vertex数

Vulkan Tutorial 21 Staging buffer

操作系统:Windows8.1 显卡:Nivida GTX965M 开发工具:Visual Studio 2017 Introduction 顶点缓冲区现在已经可以正常工作,但相比于显卡内部读取数据,单纯从CPU访问内存数据的方式性能不是最佳的.最佳的方式是采用VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT标志位,通常来说用在专用的图形卡,CPU是无法访问的.在本章节我们创建两个顶点缓冲区.一个缓冲区提供给CPU-HOST内存访问使用,用于从顶点数组中提交数据,另一个顶点