3994: [SDOI2015]约数个数和

3994: [SDOI2015]约数个数和

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 858  Solved: 587
[Submit][Status][Discuss]

Description

设d(x)为x的约数个数,给定N、M,求  

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。

接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2
7 4
5 6

Sample Output

110
121

HINT

1<=N, M<=50000

1<=T<=50000

Source

Round 1 感谢yts1999上传

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int F=1005;
const int N=5e4+5;
int n,m,T,tot,prime[N/3],mu[N],c[N];bool check[N];
ll ANS[F][F],sum[N],f[N];
inline int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
void prepare(int n){
    mu[1]=1;f[1]=1;c[1]=1;
    for(int i=2;i<=n;i++){
        if(!check[i]){
            prime[++tot]=i;
            f[i]=2;
            c[i]=1;
            mu[i]=-1;
        }
        for(int j=1;j<=tot&&i*prime[j]<=n;j++){
            check[i*prime[j]]=1;
            if(!(i%prime[j])){
                f[i*prime[j]]=f[i]/(c[i]+1)*(c[i]+2);
                c[i*prime[j]]=c[i]+1;
                mu[i*prime[j]]=0;
                break;
            }
            else{
                f[i*prime[j]]=f[i]*f[prime[j]];
                c[i*prime[j]]=1;
                mu[i*prime[j]]=-mu[i];
            }
        }
    }
    for(int i=1;i<=n;i++) sum[i]=sum[i-1]+mu[i];
    for(int i=1;i<=n;i++) f[i]+=f[i-1];
}
void solve(){
    if(n<=1000&&m<=1000) if(ANS[n][m]){
        printf("%lld\n",ANS[n][m]);
        return ;
    }
    ll ans(0);
    for(int i=1,pos;i<=n;i=pos+1){
        pos=min(n/(n/i),m/(m/i));
        ans+=(sum[pos]-sum[i-1])*f[n/i]*f[m/i];
    }
    if(n<=1000&&m<=1000) ANS[n][m]=ANS[m][n]=ans;
    printf("%lld\n",ans);
}
int main(){
    prepare(50000);
    T=read();
    while(T--){
        n=read();m=read();
        if(n>m) swap(n,m);
        solve();
    }
    return 0;
}
时间: 2024-10-07 23:01:17

3994: [SDOI2015]约数个数和的相关文章

BZOJ 3994: [SDOI2015]约数个数和

3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7

【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Source Round 1 感谢yts199

BZOJ 3994 [SDOI2015]约数个数和 (神定理+莫比乌斯反演)

3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit:128 MB Submit: 239  Solved: 176 [Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7

[BZOI 3994] [SDOI2015]约数个数和

[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问,\(N,M,T \leq 50000\) 分析 首先有一个结论 \[d(nm)= \sum _{i |n} \sum _{j|m} [gcd(i,j)=1]\] 这是因为nm的约数都可以表示为\(i \times \frac{m}{j}\)的形式,并且为了不重复算,要保证\(gcd(i,j)=1\

【刷题】BZOJ 3994 [SDOI2015]约数个数和

Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7 4 5 6 Sample Output 110 121 HINT 1<=N, M<=50000 1<=T<=50000 Solution 莫比乌斯反演 但这题更多的是套路 首先,一个神奇的东东:\(d(nm)= \

BZOJ 3994 Sdoi2015 约数个数和 莫比乌斯反演

题目大意:求∑ni=1∑mj=1d(ij) 首先我们有一个很神的结论: ∑ni=1∑mj=1d(ij)=∑ni=1∑mj=1?ni??mj?[gcd(i,j)==1] 这个结论是怎么来的呢?我们可以先证明这个: d(nm)=∑i|n∑j|m1?1[gcd(i,j)==1] 显然这个式子的前缀和就是上面的式子 现在我们来证明这个式子是对的 我们分开讨论每一个质数p对答案的贡献 不妨设n=n′?pk1,m=m′?pk2 那么左式中p的贡献显然是k1+k2+1 右式中只考虑p的话,满足要求的数对(i,

[SDOI2015] 约数个数和 (莫比乌斯反演)

[SDOI2015]约数个数和 题目描述 设d(x)为x的约数个数,给定N.M,求 \(\sum^N_{i=1}\sum^M_{j=1}d(ij)\) 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式: T行,每行一个整数,表示你所求的答案. 输入输出样例 输入样例#1: 2 7 4 5 6 输出样例#1: 110 121 说明 \(1<=N, M<=50000\) \(1<=T<=50000\

【bzoj3994】[SDOI2015]约数个数和 莫比乌斯反演

题目描述 设d(x)为x的约数个数,给定N.M,求   输入 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. 输出 T行,每行一个整数,表示你所求的答案. 样例输入 2 7 4 5 6 样例输出 110 121 题解 莫比乌斯反演 根据 bzoj4176 推出的结论, 那么就有: 预处理mu及其前缀和. 由于要处理多组询问,所以需要用O(n√n)的时间预处理出f,然后对于每组询问分块来求. #include <cstdio> #incl

Sdoi2015约数个数和题解莫比乌斯反演

题目描述 T组数据,求ΣNi=1ΣMj=1d(ij),d(x)代表x的约数个数. 1≤N,M,T≤105 题解 首先,膜拜一下PoPoQQQ大神及其题解 然后,有一个神奇的结论:ΣNi=1ΣMj=1d(ij)=ΣNi=1ΣMj=1[Ni][Mj][gcd(i,j)=1] 要证上式,只需证d(nm)=Σi|nΣj|m[gcd(i,j)=1],因为上式即为该式的前缀和形式. 分开考虑每个质数p对答案的贡献.设n=n′pk1,m=m′pk2,那p对d(nm)的贡献就是k1+k2+1,对等式右边的贡献是