Coins
Time Limit: 3000MS Memory Limit: 30000K
Total Submissions: 30413 Accepted: 10335
Description
People in Silverland use coins.They have coins of value A1,A2,A3…An Silverland dollar.One day Tony opened his money-box and found there were some coins.He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn’t know the exact price of the watch.
You are to write a program which reads n,m,A1,A2,A3…An and C1,C2,C3…Cn corresponding to the number of Tony’s coins of value A1,A2,A3…An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
The input contains several test cases. The first line of each test case contains two integers n(1<=n<=100),m(m<=100000).The second line contains 2n integers, denoting A1,A2,A3…An,C1,C2,C3…Cn (1<=Ai<=100000,1<=Ci<=1000). The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
Sample Output
8
4
Source
[email protected]
队列优化的多重背包~
我们知道暴力的求解多重背包问题是O(nms)的,显然不能通过此题。
我们需要在O(1)时间内求出f[i][j]。
(以下w[i]表示重量,v[i]表示价值)
假设当前计算到第i个,我们对于modw[i]相同的j同时处理,就可以使用队列优化了~
假设j=w[i]?k+b,那么根据f[i][j]=max(f[i?1][j?p?w[i]]+v[i]?p),我们可以得到式子
f[i]][j]=max(f[i?1][w[i]?t+b]?v[i]?t)+v[i]?k
(j%w[i]=b)
具体实现就是第一层枚举b,第二层枚举k,通过队列O(1)得到f[i?1][w[i]?t+b]?v[i]?t的最优值。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define M 105
using namespace std;
int n,m,a[M],c[M],f[100005];
int main()
{
while (scanf("%d%d",&n,&m))
{
if (!n&&!m) break;
for (int i=1;i<=n;i++)
scanf("%d",&a[i]);
for (int i=1;i<=n;i++)
scanf("%d",&c[i]);
for (int i=1;i<=m;i++)
f[i]=0;
f[0]=1;
for (int i=1;i<=n;i++)
{
if (c[i]==1)
{
for (int j=m;j>=a[i];j--)
f[j]|=f[j-a[i]];
continue;
}
if (c[i]*a[i]>=m)
{
for (int j=a[i];j<=m;j++)
f[j]|=f[j-a[i]];
continue;
}
for (int j=0;j<a[i];j++)
{
int la=-100000000;
for (int k=0;k<=(m-j)/a[i];k++)
{
int t=k*a[i]+j;
if (f[t])
{
la=k;
continue;
}
else
{
if (k-la<=c[i])
f[t]=1;
}
}
}
}
int ans=0;
for (int i=1;i<=m;i++)
ans+=f[i];
printf("%d\n",ans);
}
return 0;
}