二分图匹配(匈牙利算法)
1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数
K?nig定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数。如果你还不知道什么是最小点覆盖,我也在这里说一下:假如选了一个点就相当于覆盖了以它为端点的所有边,你需要选择最少的点来覆盖所有的边。
2.最小路径覆盖=最小路径覆盖=|G|-最大匹配数
在一个N*N的有向图中,路径覆盖就是在图中找一些路经,使之覆盖了图中的所有顶点,
且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,
那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.
路径覆盖与二分图匹配的关系:最小路径覆盖=|G|-最大匹配数;
3.二分图最大独立集=顶点数-二分图最大匹配
独立集:图中任意两个顶点都不相连的顶点集合。
二分图模板:
模板一:匈牙利算法
/* **************************************************************************
//二分图匹配(匈牙利算法的DFS实现)
//初始化:g[][]两边顶点的划分情况
//建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配
//g没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,DFS找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//***************************************************************************/
//顶点编号从0开始的
const int MAXN=510;
int uN,vN;//u,v数目
int g[MAXN][MAXN];
int linker[MAXN];
bool used[MAXN];
bool dfs(int u)//从左边开始找增广路径
{
int v;
for(v=0;v<vN;v++)//这个顶点编号从0开始,若要从1开始需要修改
if(g[u][v]&&!used[v])
{
used[v]=true;
if(linker[v]==-1||dfs(linker[v]))
{//找增广路,反向
linker[v]=u;
return true;
}
}
return false;//这个不要忘了,经常忘记这句
}
int hungary()
{
int res=0;
int u;
memset(linker,-1,sizeof(linker));
for(u=0;u<uN;u++)
{
memset(used,0,sizeof(used));
if(dfs(u)) res++;
}
return res;
}
//******************************************************************************/
模板二: Hopcroft-Carp算法
这个算法比匈牙利算法的时间复杂度要小,大数据可以采用这个算法
/* *********************************************
二分图匹配(Hopcroft-Carp的算法)。
初始化:g[][]邻接矩阵
调用:res=MaxMatch(); Nx,Ny要初始化!!!
时间复杂大为 O(V^0.5 E)
适用于数据较大的二分匹配
需要queue头文件
********************************************** */
const int MAXN=3000;
const int INF=1<<28;
int g[MAXN][MAXN],Mx[MAXN],My[MAXN],Nx,Ny;
int dx[MAXN],dy[MAXN],dis;
bool vst[MAXN];
bool searchP()
{
queue<int>Q;
dis=INF;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
for(int i=0;i<Nx;i++)
if(Mx[i]==-1)
{
Q.push(i);
dx[i]=0;
}
while(!Q.empty())
{
int u=Q.front();
Q.pop();
if(dx[u]>dis) break;
for(int v=0;v<Ny;v++)
if(g[u][v]&&dy[v]==-1)
{
dy[v]=dx[u]+1;
if(My[v]==-1) dis=dy[v];
else
{
dx[My[v]]=dy[v]+1;
Q.push(My[v]);
}
}
}
return dis!=INF;
}
bool DFS(int u)
{
for(int v=0;v<Ny;v++)
if(!vst[v]&&g[u][v]&&dy[v]==dx[u]+1)
{
vst[v]=1;
if(My[v]!=-1&&dy[v]==dis) continue;
if(My[v]==-1||DFS(My[v]))
{
My[v]=u;
Mx[u]=v;
return 1;
}
}
return 0;
}
int MaxMatch()
{
int res=0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(searchP())
{
memset(vst,0,sizeof(vst));
for(int i=0;i<Nx;i++)
if(Mx[i]==-1&&DFS(i)) res++;
}
return res;
}
//**************************************************************************/
下面的程序效率很高。是用vector实现邻接表的匈牙利算法。
处理点比较多的效率很高。1500的点都没有问题
/*
HDU 1054
用STL中的vector建立邻接表实现匈牙利算法
效率比较高
G++ 578ms 580K
*/
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
//************************************************
const int MAXN=1505;//这个值要超过两边个数的较大者,因为有linker
int linker[MAXN];
bool used[MAXN];
vector<int>map[MAXN];
int uN;
bool dfs(int u)
{
for(int i=0;i<map[u].size();i++)
{
if(!used[map[u][i]])
{
used[map[u][i]]=true;
if(linker[map[u][i]]==-1||dfs(linker[map[u][i]]))
{
linker[map[u][i]]=u;
return true;
}
}
}
return false;
}
inthungary()
{
int u;
int res=0;
memset(linker,-1,sizeof(linker));
for(u=0;u<uN;u++)
{
memset(used,false,sizeof(used));
if(dfs(u)) res++;
}
return res;
}
//*****************************************************
int main()
{
int u,k,v;
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<MAXN;i++)
map[i].clear();
for(int i=0;i<n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
map[u].push_back(v);
map[v].push_back(u);
}
}
uN=n;
printf("%d\n",hungary()/2);
}
return 0;
}
时间: 2024-11-29 10:22:45