洛谷1414 又是毕业季II

题目背景

“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!

题目描述

彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~

PS:一个数的最大公约数即本身。

输入输出格式

输入格式:

第一行一个正整数n。

第二行为n个空格隔开的正整数,表示每个学生的能力值。

输出格式:

总共n行,第i行为k=i情况下的最大默契程度。

输入输出样例

输入样例#1:

4
1 2 3 4

输出样例#1:

4
2
1
1

说明

【题目来源】

lzn原创

【数据范围】

记输入数据中能力值的最大值为inf。

对于20%的数据,n<=5,inf<=1000

对于另30%的数据,n<=100,inf<=10

对于100%的数据,n<=10000,inf<=1e6

思路就是求出每个因数出现的个数,从后往前看满不满足即可~

#include<bits/stdc++.h>
#define maxn 3000000
using namespace std;
int n,m;
int book[maxn],a[maxn];

int p;
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		p=max(p,a[i]);
		int h=int(sqrt(a[i])+0.5);
		for(int j=1;j<=h;j++)
		{
			if(a[i]%j==0)
			{
				book[j]++;
				if(j*j!=a[i]) book[a[i]/j]++;
			}
		}
	}
	for(int i=1;i<=n;i++)
	{
		while(book[p]<i) p--;
		cout<<p<<endl;
	}
	return 0;
}
时间: 2024-09-30 07:02:02

洛谷1414 又是毕业季II的相关文章

【数论】洛谷P1414又是毕业季II

题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻! 题目描述 彩排了一次,老师不太满意.当然啦,取每位同学的号数来找最大公约数显然不太合理.于是老师给每位同学评了一个能力值.于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大.但因为节目太多了,而且每个节目需要的人数又不知道.老师想要

洛谷P1372 又是毕业季I&amp;&amp;P1414 又是毕业季II[最大公约数]

P1372 又是毕业季I 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻! 题目描述 为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排.可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~).这可难为了他,请你帮帮忙吧! PS:一个数的最大公

GCD问题 洛谷P1372 又是毕业季I &amp; P1414 又是毕业季II

P1372 又是毕业季I 题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻! 题目描述 为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排.可是如何挑呢?老师列出全班同学的号数1,2,--,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~).这可难为了他,请你帮帮忙吧! PS:一个

【数论】洛谷P1372又是毕业季

题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻! 题目描述 为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排.可是如何挑呢?老师列出全班同学的号数1,2,--,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~).这可难为了他,请你帮帮忙吧! PS:一个数的最大公约数即本身. 输

洛谷 P1372 又是毕业季I Label:None

题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻! 题目描述 为了把毕业晚会办得更好,老师想要挑出默契程度最大的k个人参与毕业晚会彩排.可是如何挑呢?老师列出全班同学的号数1,2,……,n,并且相信k个人的默契程度便是他们的最大公约数(这不是迷信哦~).这可难为了他,请你帮帮忙吧! PS:一个数的最大公约数即本身. 输入输出格式

洛谷P1681 最大正方形II

P1681 最大正方形II 题目背景 忙完了学校的事,v神终于可以做他的“正事”:陪女朋友散步.一天,他和女朋友走着走着,不知不觉就来到 了一个千里无烟的地方.v神正要往回走,如发现了一块牌子,牌子上有有一行小字和一张图,小字说道:“找到图上最大的交错正方形之后和我联系,这块地就是 你的了.”在房价疯长的年代,v神当然不愿错过这个机会,于是开始找了起来……以v神的能力当然找不出来了,你能帮v神找出来吗? 题目描述 图上有一个矩阵,由N*M个格子组成,这些格子由两种颜色构成,黑色和白色.请找到面积

[洛谷1681]最大正方形II

思路:对于矩阵中的每一个元素,处理出它能扩展到的上边界$up$.左边界$left$,DP得出以该元素为右下角的最大正方形.状态转移方程:$f_{i,j}=min(f_{i-1,j-1},up_{i,j},left_{i,j})$. 1 #include<cstdio> 2 #include<cctype> 3 #include<algorithm> 4 inline int getint() { 5 char ch; 6 while(!isdigit(ch=getcha

又是毕业季I

洛谷P1372 又是毕业季I 对于答案a,k*a是最接近n的,即a=n/k(下取整),所以直接输n/k即可. 我的方法是 二分查找 n/k真的没有想到唉. 我找的最大公约数,如果当前的mid对应的个数比k大,就往大了找,否则往小里找,对于边界问题,要加一些特判. #include<bits/stdc++.h> using namespace std; int n,k; bool p(int x) { int i; for(i=0;i<=n&&i*x<=n;i++){

洛谷P1182 数列分段Section II 二分答案

洛谷P1182 数列分段Section II 二分答案 题意:将 n 个 数 分为 m段 求一种方案,使这m段中最大的和 最小 额..可能有点拗口,其实就是说每一种方案,都有对应的 每段和的最大值,要求一种方案,使最大值最小 题解 :二分答案 mid为分成的最大值, 然后O(n) 判断 答案 是否可行 贪心的做下去,如果再加上就要超过了,那就新开一段 最后判断开的段数是否小于 m 1.注意要判断 如果当前这个值大于 mid,一个值就已经大于 mid了,那就直接退出了,否则 ,这个值也只会单独算为