机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)

  1. 形式:

    采用sigmoid函数:

    g(z)=11+e?z

    其导数为g′(z)=(1?g(z))g(z)

    假设:

    即:

    若有m个样本,则似然函数形式是:

    对数形式:

    采用梯度上升法求其最大值

    求导:

    更新规则为:

    可以发现,则个规则形式上和LMS更新规则是一样的,然而,他们的分界函数hθ(x)却完全不相同了(逻辑回归中h(x)是非线性函数)。关于这部分内容在GLM部分解释。

    注意:若h(x)不是sigmoid函数而是阈值函数:

    这个算法称为感知学习算法。虽然得到更新准则虽然相似,但与逻辑回归完全不是一个算法了。

  2. 另一种最大化似然函数的方法–牛顿逼近法
    • 原理:假设我们想得到一个函数的过零点f(θ)=0,可以通过一下方法不断更新θ来得到:

      其直观解释如下图:

      给定一个初始点θ0,如果f(θ0)和其导数同号说明过零点在初始点左边,否则在初始点右边,将初始点更新过该店的切线的过零点继续上述步骤,得到的切线过零点会不断逼近最终所要求的函数过零点。

    • 应用: 在逻辑回归中,我们要求似然函数的最大(最小)值,即似然函数导数为0, 因此可以利用牛顿逼近法:

      由于lr算法中θ是一个向量,上式改写为:

      其中H为Hessian矩阵:

      牛顿法往往比(批处理)梯度下降法更快收敛。

时间: 2024-11-07 23:11:46

机器学习算法笔记1_2:分类和逻辑回归(Classification and Logistic regression)的相关文章

分类和逻辑回归(Classification and logistic regression),广义线性模型(Generalized Linear Models) ,生成学习算法(Generative Learning algorithms)

分类和逻辑回归(Classification and logistic regression) http://www.cnblogs.com/czdbest/p/5768467.html 广义线性模型(Generalized Linear Models) http://www.cnblogs.com/czdbest/p/5769326.html 生成学习算法(Generative Learning algorithms) http://www.cnblogs.com/czdbest/p/5771

分类和逻辑回归(Classification and logistic regression)

分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里.首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件.所以0称之为负类(negative class),1为正类(positive class) 逻辑回归 首先看一个肿瘤是否为恶性肿瘤的分类问题,可能我们一开始想到的是用线性回归的方法来求解,如下图:

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

【机器学习算法应用和学习_2_理论篇】2.2 M_分类_逻辑回归

一.原理阐述 算法类型:监督学习_分类算法 输入:数值型或标称型(标称型需要独热编码) V1.0 用回归方式解决二分类问题,通过引入一个Sigmoid函数将中间y值映射到实际二分类的y值上. 二.算法选择 三.算法过程 1.Sigmoid函数是一个x值域是(-∞,+∞),y值域是(0,1)的单调递增函数: 2.预测y值>0.5为1类,<0.5为0类,y值也可以解释为为1和0类的概率: 3.同样使用“最小二乘”概念,求得最佳方程,得到目标函数: 4.要使得目标函数达到最小,需要采用一种称为“梯度

机器学习(一)——线性回归、分类与逻辑回归

http://antkillerfarm.github.io/ 序 这是根据Andrew Ng的<机器学习讲义>,编写的系列blog. http://www.cnblogs.com/jerrylead/archive/2012/05/08/2489725.html 这是网友jerrylead翻译整理的版本,也是本文的一个重要的参考. http://www.tcse.cn/~xulijie/ 这是jerrylead的个人主页. 我写的版本在jerrylead版本的基础上,略有增删,添加了一下其他

第二章 分类和逻辑回归

分类和逻辑回归 接下来讨论分类问题,类似于回归问题,只不过y的值只有少数离散的值.现在我们考虑二分类问题,此时y只有0和1两个值. 逻辑回归 构造假设函数$h_{\theta}(x)$: $h_{\theta}(x)=g(\theta^{(x)})=\frac{1}{1+e^{-\theta^{T}x}}$ 其中 $g(z)=\frac{1}{1+e^{-z}}$ $g^{'}(z)=g(z)(1-g(z))$ $g(z)$函数图像如下: $g^{'}(z)$函数图像如下: 假设: $P(y=1

机器学习的分类方法——逻辑回归

这个算法看得一知半解的,无论如何,先把理解的写下来,往后再迭代.还是以问题为导向: 这个分类模型如何构建? 这个模型的分类原理? 如何求解模型的参数? 逻辑回归模型有什么优点? 第一个问题,对于简单的线性模型,z=w·x+b,可以用它回归,然后利用最小二乘法求解参数w和b.当这个线性模型和sigmoid函数复合时,就构成了逻辑回归模型.对于sigmoid函数,如下图:其将z(图中的x替换为z) 第二个问题,根据对"事件几率"的定义:给事件发生与不发生的概率比,

机器学习笔记(六)逻辑回归

一.逻辑回归问题 二分类的问题为是否的问题,由算出的分数值,经过sign函数输出的是(+1,-1),想要输出的结果为一个几率值,则需要改变函数模型 ,其中,, 则逻辑回归的函数为 二.逻辑回归错误评价 线性分类和线性回归的模型为: 其中的线性分数函数均为,逻辑回归有同样的分数函数,模型为 逻辑回归的理想函数为 对于函数f(x),在数据情况下,D的所有数据在函数下的联合概率为 ,我们想要的模型h要使,则对于h来说,在数据D中也符合, 要使需要找到一个g使它发生的可能性最大,即 由 p(x1),p(

机器学习算法笔记2_1:生成学习算法(Generative Learning algorithms)

我们之前学习的算法都是基于p(y|x;θ), 他的思想是找出找出一个决策边界来将两类分开,而生成算法是先对两个类别分别建模,为了将样本分开,将样本代入两个模型,看样本与哪个类别更匹配. 这种试图直接从输入x映射到类别标签{0,1}的算法被称为判别学习算法:而通过计算p(x|y)(和p(y))来得到模型的算法被称为生成学习算法 通过贝叶斯函数得到p(y|x)=p(x|y)p(y)p(x), argmaxyp(y|x)=argmaxyp(x|y)p(y)p(x)=argmaxyp(x|y)p(x)