设三角形为ABC, a=BC, b=CA, c=AB
重心:三条边的中线的交点
重心:G(x,y)= 1/3 * A(x,y) + 1/3 * B(x,y) + 1/3 * C(x,y)
内心:三个点的角平分线的交点
内心I(x,y)= ( a * A(x,y) + b * B(x,y) + c * C(x,y) ) /(a+b+c)
推导:内心定理
内心定理证明:
由角平分线定理DC/DB = b/c,即,
,
由角平分线定理 IA/ID = b/CD
而 CD/a = b/(b+c)
所以IA/ID = (b+c)/a,即,
证明结束。
定义:
P = (a^2+b^2+c^2)/2;
u = P-a^2; v = P-b^2; w =P-c^2;
Q = uvw / (uv + vw + uw);
λ1 = Q/u; λ2 = Q/v; λ3 =Q/u;
外心:三条边的中垂线的交点
外心:O(x,y)= (1-λ1)/2 * A(x,y) + (1-λ2)/2 * B(x,y) + (1-λ3)/2 * C(x,y)
垂心:三个点的垂线的交点
垂心:H(x,y)= λ1 * A(x,y) + λ2 * B(x,y) + λ3 * C(x,y)
参数含义:
设
由余弦定理: 2abcosC =a2+b2-c2,
所以w= P-c^2 = (a^2+b^2-c^2)/2 =
时间: 2024-10-10 07:58:16