推荐系统(协同过滤,slope one)

1.推荐系统中的算法:

协同过滤:

基于用户 user-cf

基于内容 item –cf

slop one

关联规则 (Apriori 算法,啤酒与尿布)

2.slope one 算法

slope one 算法是基于不同物品之间的评分差的线性算法,预测用户对物品评分的个性化算法。slope one 算法是由daniel 教授在2005年提出。主要分为2步

1. 计算物品之间评分差的平均值,记为物品间的评分偏差;

2.根据物品间的评分偏差和用户的历史评分,给用户生成预测评分高的推荐物品列表。

实例:

3.slope one 适用场景与优缺点

7.推荐系统的评测指标:

覆盖率

召回率

F1

时间: 2024-10-26 22:07:00

推荐系统(协同过滤,slope one)的相关文章

推荐系统-协同过滤原理与实现

一.基本介绍 1. 推荐系统任务 推荐系统的任务就是联系用户和信息一方面帮助用户发现对自己有价值的信息,而另一方面让信息能够展现在对它感兴趣的用户面前从而实现信息消费者和信息生产者的双赢. 2. 与搜索引擎比较 相同点:帮助用户快速发现有用信息的工具 不同点:和搜索引擎不同的是推荐系统不需要用户提供明确的需求而是通过分析用户的历史行为来给用户的兴趣建模从而主动给用户推荐出能够满足他们兴趣和需求的信息. 3. 长尾理论 长尾讲述的是这样一个故事:以前被认为是边缘化的.地下的.独立(艺人?)的产品现

推荐系统协同过滤基于的两种假设

基于用户的协同过滤,基于的假设是:喜欢相同物品的用户具有相似性. 相同物品越多,用户相似性越大.(有点基于统计的意思) 基于用户的协同过滤推荐机制和基于人口统计学的推荐机制都是计算用户的相似度,并基于“邻居”用户群计算推荐,但它们所不同的是如何计算用户的相似度,基于人口统计学的机制只考虑用户本身的特征,而基于用户的协同过滤机制可是在用户的历史偏好的数据上计算用户的相似度,它的基本假设是,喜欢类似物品的用户可能有相同或者相似的口味和偏好. 基于项目的协同过滤,基于的假设是:同一个人喜欢的几个物品具

【Spark机器学习速成宝典】推荐引擎——协同过滤

目录 推荐模型的分类 条目2 条目3 条目4 条目5 条目6 条目7 条目8 条目9 推荐模型的分类 最为流行的两种方法是基于内容的过滤.协同过滤. 基于内容的过滤: 比如用户A买了商品A,商品B与商品A相似(这个相似是基于商品内部的属性,比如"非常好的协同过滤入门文章"和"推荐系统:协同过滤collaborative filtering"比较相似),那么就能将商品B推荐给用户. 协同过滤: 利用的是训练数据是大量用户对商品的评分,即(userID,productI

《推荐系统》--协同过滤推荐

<Recommender System An Introduction>,第二章,协同过滤推荐. 定义 协同过滤推荐方法的主要思想是,利用已有用户群过去的行为或意见预测当前用户最可能喜欢哪些东西或对哪些东西感兴趣.此类型的推荐系统当前在业界广泛使用. 纯粹的协同方法的输入数据只有给定的用户-物品评分矩阵,输出数据一般有以下几种类型: (1)表示当前用户对物品喜欢或不喜欢程度的预测数值: (2)n项推荐物品的列表. 基于用户的最近邻推荐 主要思想 这是一种早期方法,user-based near

[Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现

1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web 应用中利用集体智慧构建更加有趣的应用或者得到更好的用户体验.集体智慧是指在大量的人群的行为和数据中收集答案,帮助你对整个人群得到统计意义上的结论,这些结论是我们在单个个体上无法得到的,它往往是某种趋势或者人群中共性的部分. Wikipedia 和 Google 是两个典型的利用集体智慧的 Web

Slope One 协同过滤 推荐算法

Slope one  是一个简单,效率较高的协同过滤推荐算法. Slope One 算法是由 Daniel Lemire 教授在 2005 年提出.距今已经10年.   基于如下五点被设计出来: 1. 算法容易实现和维护 2. 对新的评分应该立即给予响应 3. 查询速度要快(虽然可能以牺牲存储量为代价) 4. 对新的用户也要能给出有效的推荐 5. 精度上要有竞争力 slope one用于推荐,其特点是算法逻辑简单,实现容易,算法复杂度低. 像是刚接触推荐系统的朋友可以先采用这种算法来快速实现推荐

【读书笔记】《推荐系统(recommender systems An introduction)》第二章 协同过滤推荐

输入:"用户-物品"评分矩阵 输出:(1)用户对某个物品喜欢程度的评分:(2)对于用户,n个推荐的物品列表 1. 基于用户的最近邻推荐(user-based cf) 算法基本假设:(1)如果用户过去有相似的偏好,那么他们未来也会有相似的偏好:(2)用户的偏好不随时间变化而变化 用户相似度计算:user-based cf中pearson相关系数比较好:item-based cf中余弦相似度比较好.学术界在相似度方面有较为深入的研究,例如:很多领域都存在一些所有人都喜欢的物品(热门物品),

基于Spark MLlib平台的协同过滤算法---电影推荐系统

基于Spark MLlib平台的协同过滤算法---电影推荐系统 又好一阵子没有写文章了,阿弥陀佛...最近项目中要做理财推荐,所以,回过头来回顾一下协同过滤算法在推荐系统中的应用. 说到推荐系统,大家可能立马会想到协同过滤算法.本文基于Spark MLlib平台实现一个向用户推荐电影的简单应用.其中,主要包括三部分内容: 协同过滤算法概述 基于模型的协同过滤应用---电影推荐 实时推荐架构分析     一.协同过滤算法概述 本人对算法的研究,目前还不是很深入,这里简单的介绍下其工作原理. 通常,

推荐系统之协同过滤

这个转自csdn,很贴近工程. 协同过滤(Collective Filtering)可以说是推荐系统的标配算法. 在谈推荐必谈协同的今天,我们也来谈一谈基于KNN的协同过滤在实际的推荐应用中的一些心得体会. 我们首先从协同过滤的两个假设聊起. 两个假设: 用户一般会喜欢与自己喜欢物品相似的物品 用户一般会喜欢与自己相似的其他用户喜欢的物品 上述假设分别对应了协同过滤的两种实现方式:基于物品相似(item_cf)及基于用户相似(user_cf). 因此,协同过滤在实现过程中,最本质的任务就是计算相