voj 1754 spfa

最优贸易

最优贸易

描述

C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个 城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。 C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价 格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。 商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息 之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城 市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的 过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方 式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另 一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定 这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。 假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路 为单向通行,双向箭头表示这条道路为双向通行。

假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。 阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3 号城市以 5的价格卖出水晶球,赚取的旅费数为 2。 阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格 买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。

现在给出 n个城市的水晶球价格,m条道路的信息(每条道路所连接的两个城市的编号 以及该条道路的通行情况) 。请你告诉阿龙,他最多能赚取多少旅费。

格式

输入格式

第一行包含 2 个正整数 n 和 m,中间用一个空格隔开,分别表示城市的数目和道路的 数目。 第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这 n 个城 市的商品价格。 接下来 m行, 每行有 3 个正整数, x, y, z, 每两个整数之间用一个空格隔开。 如果 z=1, 表示这条道路是城市 x到城市 y之间的单向道路;如果 z=2,表示这条道路为城市 x 和城市 y之间的双向道路。

输出格式

输出共1 行, 包含 1 个整数, 表示最多能赚取的旅费。 如果没有进行贸易, 则输出 0。

样例1

样例输入1

5 5
4 3 5 6 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2

样例输出1

5

限制

每个测试点1s

输入数据保证 1 号城市可以到达n 号城市。 对于 10%的数据,1≤n≤6。 对于 30%的数据,1≤n≤100。 对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。 对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市 水晶球价格≤100。

来源

NOIP 2009

首先我们知道一定要先买完之后才能进行卖的操作,假设我们在k点买了水晶球,那么卖点m一定是在某一条k-->N的路径上的某一个点,因为最后的终点是N,反之从N也一定能到达这个卖点m,所以我们有了思路.

我们可以枚举所有点为买点,显然这是从1开始跑一下spfa找到每条路径的最小权值德文操作。

我们找到买点还需要找到最大的卖点,我们发现对于每个买点k,其最大卖点就是从N-->k的路径最大权值,显然也可以反向跑一下spfa!

一开始想跑dij发现不满足低级的贪心需求,所以还是sfpa吧。

#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define inf 0x3f3f3f3f
int N,M,C[100005];
vector<int> g1[100005],g2[100005];
int d1[100005],d2[100005];
bool vis[100005];
void spfa()
{
    memset(d1,inf,sizeof(d1));
    memset(d2,0,sizeof(d2));
    queue<int> Q;
    Q.push(1);
    vis[1]=1;
    d1[1]=C[1];
    while(!Q.empty()){
        int u=Q.front(); Q.pop();
        vis[u]=0;
        for(int i=0;i<g1[u].size();i++){ int x=g1[u][i];
            if(d1[x]>min(d1[u],C[x])){
                d1[x]=min(d1[u],C[x]);
                if(!vis[x]) { Q.push(x); vis[x]=1;}
            }
        }
    }

memset(vis,0,sizeof(vis));
    while(!Q.empty()) Q.pop();
    Q.push(N);
    vis[N]=1;
    d2[N]=C[N];
    while(!Q.empty()){
      int u=Q.front();  Q.pop();
      vis[u]=0;
      for(int i=0;i<g2[u].size();i++){int x=g2[u][i];
      if(d2[x]<max(d2[u],C[x])){
           d2[x]=max(d2[u],C[x]);
           if(!vis[x]) {Q.push(x); vis[x]=1;}
      }
      }
    }
    int ans=0;  bool pd=false;
for(int i=1;i<=N;++i)
if(d1[i]!=inf&&d2[i]!=0)   {pd=1;ans=max(ans,abs(d1[i]-d2[i]));}
if(!pd) ans=0;
cout<<ans<<endl;
}
int main()
{
    int i,j,k;
    int a,b,c;
    cin>>N>>M;
    for(i=1;i<=N;++i) scanf("%d",&C[i]);
    for(i=1;i<=M;++i){
        scanf("%d%d%d",&a,&b,&c);
        g1[a].pb(b);
        g2[b].pb(a);
        if(c==2){
            g1[b].pb(a);
            g2[a].pb(b);
        }
    }
    spfa();
    return 0;
}

时间: 2024-10-13 22:12:35

voj 1754 spfa的相关文章

UESTC30-最短路-Floyd最短路、spfa+链式前向星建图

最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的T-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据. 每组数据第一行是两个整数NN ,MM (N≤100N≤100 ,M≤10000M≤1000

畅通project续HDU杭电1874【dijkstra算法 || SPFA】

http://acm.hdu.edu.cn/showproblem.php?pid=1874 Problem Description 某省自从实行了非常多年的畅通project计划后.最终修建了非常多路.只是路多了也不好,每次要从一个城镇到还有一个城镇时,都有很多种道路方案能够选择,而某些方案要比还有一些方案行走的距离要短非常多.这让行人非常困扰. 如今,已知起点和终点,请你计算出要从起点到终点.最短须要行走多少距离. Input 本题目包括多组数据.请处理到文件结束. 每组数据第一行包括两个正

HDU 1754 I Hate It(线段树之单点更新,区间最值)

I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 70863    Accepted Submission(s): 27424 Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少. 这让很多学生很反感.不管你喜不喜欢,现在需要你做的是,就是按照老师的

HDU 2722 Here We Go(relians) Again (spfa)

Here We Go(relians) Again Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 1   Accepted Submission(s) : 1 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description The Gorelians

[BZOJ 1295][SCOI2009]最长距离(SPFA+暴力)

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1295 分析:很巧妙的一道spfa从搜索的角度是搜索在所有1中搜索删除哪T个1,对整个图询问,这样肯定TLE 不妨反过来想一想:对于两个点,弄出联通这两个点所需删除的最少的1,那么就知道这两个点是否可以作为题目要求的起点和终点,如果满足算一下结果和ans比较一下就可以. 所以算法就出来了: 枚举起点(S,T),用SPFA跑出图上的所有点到起点这条路径联通的最少删除的1,那么ans=max(di

poj3268 Silver Cow Party (SPFA求最短路)

其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #

POJ--3259--Wormholes【SPFA判负权值回路】

题意:有n个点,之间有m条双向路径,还有w个虫洞,单向,从一点到另一点需要花费时间,但是有虫洞的话会减少时间,一个人想要走某一条路使得他能碰到过去的自己,问这个图是否能让他实现他的想法. 其实就是判一个图是否存在负权值回路,SPFA可以实现,原理是:如果存在负权值回路,那么从源点到某个顶点的距离就可以无限缩短,因此就会无限入队,所以在SPFA中统计每个顶点的入队次数,如果超过了n个(顶点个数)则说明存在负权值回路. 我把输出yes和输出no写反了,WA了两发,看了半天都没发现... #inclu

POJ 3259 Wormholes SPFA算法题解

本题其实也可以使用SPFA算法来求解的,不过就一个关键点,就是当某个顶点入列的次数超过所有顶点的总数的时候,就可以判断是有负环出现了. SPFA原来也是可以处理负环的. 不过SPFA这种处理负环的方法自然比一般的Bellman Ford算法要慢点了. #include <stdio.h> #include <string.h> #include <limits.h> const int MAX_N = 501; const int MAX_M = 2501; const

ZOJ 3794 Greedy Driver spfa

题意: 给定n个点,m条有向边,邮箱容量. 起点在1,终点在n,开始邮箱满油. 下面m行表示起点终点和这条边的耗油量(就是长度) 再下面给出一个数字m表示有P个加油站,可以免费加满油. 下面一行P个数字表示加油站的点标. 再下面一个整数Q 下面Q行 u v 表示在u点有销售站,可以卖掉邮箱里的任意数量的油,每以单位v元. 问跑到终点能获得最多多少元. 先求个每个点的最大剩余油量 f[i], 再把边反向,求每个点距离终点的最短路 dis[i]. 然后枚举一下每个销售点即可,( f[i] - dis