题目链接:Codeforces 461B Appleman and Tree
题目大意:一棵树,以0节点为根节点,给定每个节点的父亲节点,以及每个点的颜色(0表示白色,1表示黑色),切断这棵树的k条边,使得树变成k+1个联通分量,保证每个联通分量有且仅有1个黑色节点。问有多少种分割方法。
解题思路:树形dp,dp[i][0]和dp[i][1]分别表示子树一下的分割方法中,i节点所在联通块不存在黑节点和已经存在一个黑节点的方案数。
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
const int maxn = 1e5+5;
int N, v[maxn];
ll dp[maxn][2];
vector<int> g[maxn];
void init () {
memset(dp, 0, sizeof(dp));
int x;
scanf("%d", &N);
for (int i = 1; i < N; i++) {
scanf("%d", &x);
g[x].push_back(i);
}
for (int i = 0; i < N; i++)
scanf("%d", &v[i]);
}
ll pow_mod (ll x, int n, ll mod) {
ll ret = 1;
while (n) {
if (n&1)
ret = ret * x % mod;
x = x * x % mod;
n >>= 1;
}
return ret;
}
ll inv (ll x) {
if (x == 0)
return 1;
return pow_mod(x, MOD-2, MOD);
}
void solve (int u) {
if (g[u].size() == 0) {
dp[u][v[u]] = 1;
return;
}
for (int i = 0; i < g[u].size(); i++)
solve(g[u][i]);
if (v[u]) {
dp[u][0] = 0;
ll& ans = dp[u][1];
ans = 1;
for (int i = 0; i < g[u].size(); i++) {
int k = g[u][i];
ans = ans * (dp[k][1] + dp[k][0]) % MOD;
}
} else {
dp[u][1] = 0;
ll& ans = dp[u][0];
ans = 1;
for (int i = 0; i < g[u].size(); i++) {
int k = g[u][i];
ans = ans * (dp[k][0] + dp[k][1]) % MOD;
}
for (int i = 0; i < g[u].size(); i++) {
int k = g[u][i];
dp[u][1] += ans * inv(dp[k][0] + dp[k][1]) % MOD * dp[k][1] % MOD;
dp[u][1] %= MOD;
}
}
//printf("%d %d %d\n", u, dp[u][0], dp[u][1]);
}
int main () {
init();
solve(0);
printf("%lld\n", dp[0][1] % MOD);
return 0;
}
时间: 2024-10-14 05:02:02