C++中内存分配

程序在的内存中的分配(常量,局部变量,全局变量,程序代码)

一. 在c中分为这几个存储区
1.栈 - 由编译器自动分配释放
2.堆 - 一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收
3.全局区(静态区),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。- 程序结束释放
4.另外还有一个专门放常量的地方。- 程序结束释放
                                                                                                                                              
在函数体中定义的变量通常是在栈上,用malloc, calloc, realloc等分配内存的函数分配得到的就是在堆上。在所有函数体外定义的是全局量,加了static修饰符后不管在哪里都存放在全局区(静态区),在所有函数体外定义的static变量表示在该文件中有效,不能extern到别的文件用,在函数体内定义的static表示只在该函数体内有效。另外,函数中的"adgfdf"这样的字符串存放在常量区。比如:

//main.cpp

int a = 0;      // 全局初始化区

char *p1;      // 全局未初始化区

void main()

{

    int b;            // 栈区

    char s[] = "abc"// 栈区

    char *p2; // 栈区

    char *p3 = "123456"// p3在栈区;   "123456\0" 在常量区, 

    static int c =0;      // 全局(静态)初始化区

    p1 = (char *)malloc(10);

    p2 = (char *)malloc(20); // 分配得来的10和20字节的区域就在堆区 

    strcpy(p1, "123456");    // "123456\0" 放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。

}

二.在C++中,内存分成5个区,他们分别是堆、栈、自由存储区、全局/静态存储区和常量存储区
1.栈,
就是那些由编译器在需要的时候分配,在不需要的时候自动清楚的变量的存储区。里面的变量通常是局部变量、函数参数等。
2.堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程序去控制,一般一个new就要对应一个delete。如果程序员没有释放掉,那么在程序结束后,操作系统会自动回收。
3.自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,不过它是用free来结束自己的生命的。
4.全局/静态存储区,全局变量和静态变量被分配到同一块内存中,在以前的C语言中,全局变量又分为初始化的和未初始化的,在C++里面没有这个区分了,他们共同占用同一块内存区。
5.常量存储区,这是一块比较特殊的存储区,他们里面存放的是常量,不允许修改(当然,你要通过非正当手段也可以修改)

以上引自http://www.cnblogs.com/JCSU/articles/1051579.html

三、堆和栈的理论知识 
申请方式 
stack: 由系统自动分配。   例如,声明在函数中一个局部变量   int   b;   系统自动在栈中为b开辟空间 
heap: 需要程序员自己申请,并指明大小,在c中malloc函数 
如p1  =   (char   *)malloc(10); 
在C++中用new运算符 
如p2  =   (char   *)malloc(10);

但是注意p1、p2本身是在栈中的。

三。

全局变量如果不初始化,则默认为0,编译时编译器不提示“变量未初始化”。

VC++ 6.0 编译器编译期存储器分配模型 (内存布局)

VC ++ 6.0  编译器编译期存储器分配模型(内存布局)

----转载自网络

一、内存区域的划分

一个由C/C++编译的程序占用的内存分为以下几个部分:

1)、栈区(Stack):由编译器(Compiler)自动分配释放,存放函数的参数值,局部变的值等。其操作方式类似于数据结构中的栈。

2)、堆区(Heap ):一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配

方式倒是类似于链表。

3)、全局区(静态区)(static):全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全

局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统释放。

4)、文字常量区:常量字符串就是放在这里的。程序结束后由系统释放。

5)、程序代码区:存放函数体的二进制代码。

二、测试案例(源码与反汇编对照)

2.1   测试案例源码与反汇编对照

为了能够形象地说明内存布局模型,先来看一段Win32 Console Application代码(表3.1),其中,加粗文字(行最左端为行标号)

为C源代码,未加粗文字(行最左端为地址)为反汇编后的指令代码。看上去比较零乱,不过一定要耐住性子,后面的文字将基于此。

3.2   内存布局图

对于该案例,以下几幅图形象地说明了第2节提到的内存5大区域。需要注意的是,图中各区域的起始地址不是绝对的,不同的编译环境可能不完全相同,这里给出的只是一个典型示例。需要注意的是,不同区域地址编址方向也不同。

3、应用

通过对第3节案例的理解,我们将对一些现象予以解释。

3.1、变量初始化

1)局部变量将被分配在栈中,如果不初始化,则为不可预料值。编译时,编译器将抛出一个编号为C4700警告错误(local variable ‘变量名‘ used without having been initialized)。

表4.1代码测试了局部变量未初始化的情况。

该测试的一个典型的输出结果为:-858993460,同时,编译时编译器抛出了一条警告错误。

2)全局变量如果不初始化,则默认为0,编译时编译器不提示“变量未初始化”。

表4.2代码测试了全局变量未初始化的情况。

该测试的输出结果为:0.

3)全局变量初始化为0与不初始化效果一样。请留意表3.1第9行代码,即

intinit_array_g1[10]={0};                       //初始化的全局数组1

等效于:

int   init_array_g1[10];                       //初始化的全局数组1

当然,出于谨慎,我们还是建议在使用全局变量前对其初始化。

3.2 变量初始化对代码空间的影响

本小节任然讨论变量初始化问题,但出于重视,我们将其独立成小节。现在看两个测试案例。

案例1:建立Win32 Console Application工程,工程名:Test1,代码如表4.3。

编译成Debug版本,察看Debug目录下的Test1.exe可执行文件大小,典型大小约184KB(约0.18MB)。

案例2:建立Win32 Console Application工程,工程名:Test2,代码如表4.4。

编译成Debug版本,察看Debug目录下的Test2.exe可执行文件大小,典型大小约46MB。

两个案例唯一区别不过在于是用0还是1初始化 init_array_g1[]数组第0个元素。生成的可执行文件大小却天壤之别。

上面已经说过,对于全局变量初始化为0与不初始化效果一样。因此,这里的Test1案例并没有对全局变量初始化。

那么全局变量初始化于不初始化对代码空间又有什么影响呢?

我们知道,运行于基于冯·诺依曼体系结构系统上的程序,数据和程序是一起存储了。因此,编译时,编译器会将全局变量的初始化数据捆绑到最终生成的程序文件中,而对于未初始化的全局变量只是为其分配(指示)了存储位置,不会将大量的0捆绑到程序中。

现在再来看以上两个案例。Test1实质上没有初始化全局变量,编译时编译器只是为了init_array_g1[]指出了将要使用的内存位置,而不发生 数据绑定。Test2则不同,它将init_array_g1[0]初始化为1,其它元素全部初始化为0,因此,编译器将把 init_array_g1[]数组的10000000个元素的初始化数据全部捆绑到最终的可执行文件中,导致编译后的文件十分庞大。

3.3   关于堆和栈

由于历史原因,我们习惯把堆和栈合在一起称呼(堆栈),然而,在这里我们要严格区分堆和栈的概念。

例程中声明的局部变量被分配在栈中,而栈的大小是相当有限的(一、两个兆),庞大的数组可能使栈不够用,造成运行期栈溢出(Overflow)错误(注意:不是编译器错误),而堆的大小主要取决于系统可用内存和虚存的多少。下面来看几个例子:

案例3代码如表4.5所示:

编译该代码,没有编译期错误。执行时却发生了运行期错误(提示Statck Overflow),因为栈空间不够用。

案例4,把案例3代码改一下,数组定位为全局变量,如表4.6所示:

编译该代码,没有编译期错误,也不发生运行期错误。因为全局变量不是分配在栈中的(注意:也不在堆中),能用多大空间取决于系统可用内存和虚存的多少。

对于案例3的问题还有一种方法可以解决:动态申请内存空间。

动态申请的内存空间是在运行期分配的,一旦申请成功,将分配在堆中,因此,大小也是取决于系统可用内存和虚存的多少。

案例5:把案例3代码用另一种方法改一下,如表4.7所示。

案例5的内存空间在堆中。还有一点不同于案例4:案例4的内存空间是在编译器分配的,而案例5的内存空间是在运行期分配的,有可能分配不到空间。

3.4) 地址递减编制方式

或许其它资料中已经描述了“地址递减”编址方式分配内存的概念,所谓“地址递减“是指编译器编译程序时,按变量声明先后,从可分配内存中从高地址向低地址分配内存。什么意思?还是先来看一个例子。

案例6是一个有逻辑错误的程序(表4.7所示),不妨称其为“变态”程序。那么它是如何BT的呢?

这个程序没有编译器错误,但却是一个死循环程序。我们想知道的是:它为什么是个死循环,而不是其它什么错误?通过以上文字对内存布局的介绍,我们已经可以很容易解释之。

仿照第3节内容可以画出内存布局示意图(如图4.1所示,图中起始地址只是一个典型情况)。

注意,程序中引用了array[10]————数组下标越界(VC++6.0编译器可以检查出显示的下标越界,但是不检查隐式的下标越界)。循环内部会将 所谓的array[10]置1,而从图4.1可知,array[10]实质上就是i,导致程序最终死循环也就理所当然了。

一切变得明朗起来,我们不仅解释了程序中的问题,同时还明白了“地址递减”编址方式并不神秘,它原来就是我们前面提到的栈内存区的编址方式。

时间: 2025-01-06 01:59:00

C++中内存分配的相关文章

内核中内存分配--关于高端内存

Linux把物理内存划分为了三个管理区, 分别为0-16MB的ZONE_DMA, 16-896MB的ZONE_NORMAL和高于896MB的ZONE_HIGHMEM也就是高端内存. 至于为什么这么划分, ZONE_DMA好理解, 因为ISA总线只能对前16MB进行DMA寻址, 这块要分出来不能乱用. 而ZONE_NORMAL和ZONE_HIGHMEM为什么从896MB区分呢? 这还得从物理地址和虚拟地址说起. 默认情况下, 内核空间是指3GB-4GB的虚拟地址, 用户空间则是0-3GB. 内核进

C语言中内存分配

C语言中内存分配 在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要介绍内存管理基本概念,重点介绍C程序中内存的分配,以及C语言编译后的可执行程序的存储结构和运行结构,同时还介绍了堆空间和栈空间的用途及区别. 第2节主要介绍C语言中内存分配及释放函数.函数的功能,以及如何调用这些函数申请/释放内存空间及其注意事项. 3.1 内存管理基本概念 3.1.1 C程序内存分配 1

C语言中内存分配 (转)

在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要介绍内存管理基本概念,重点介绍C程序中内存的分配,以及C语言编译后的可执行程序的存储结构和运行结构,同时还介绍了堆空间和栈空间的用途及区别. 第2节主要介绍C语言中内存分配及释放函数.函数的功能,以及如何调用这些函数申请/释放内存空间及其注意事项. 3.1 内存管理基本概念 3.1.1 C程序内存分配 1.C程序结构 下面

【转】C语言中内存分配

原文:C语言中内存分配 在任何程序设计环境及语言中,内存管理都十分重要.在目前的计算机系统或嵌入式系统中,内存资源仍然是有限的.因此在程序设计中,有效地管理内存资源是程序员首先考虑的问题. 第1节主要介绍内存管理基本概念,重点介绍C程序中内存的分配,以及C语言编译后的可执行程序的存储结构和运行结构,同时还介绍了堆空间和栈空间的用途及区别. 第2节主要介绍C语言中内存分配及释放函数.函数的功能,以及如何调用这些函数申请/释放内存空间及其注意事项. 3.1 内存管理基本概念 3.1.1 C程序内存分

java中内存分配策略及堆和栈的比较

2.1 内存分配策略 按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区

[转]网上看到的关于C中内存分配的描述

1栈   -   有编译器自动分配释放     2堆   -   一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收     3全局区(静态区),全局变量和静态变量的存储是放在一块的,初始化的全局变量和静     态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域.       -   程序结束释放     4另外还有一个专门放常量的地方.   -   程序结束释放     在函数体中定义的变量通常是在栈上,用malloc,   calloc,   reall

C语言中内存分配那些事儿

C程序的内存结构 C语言的之所以复杂,首先它的内存模型功不可没.不像某些那样的高级语言只需要在使用对象的时候,用new创建.所有之后的事情,你不需要操心.对于C语言,所有与内存相关的东西,都需要熟悉,否则,时间一久,总会踩着雷.下图是典型的一个C程序的内存结构,当然还有一个重要的前提,这样的一种布局是在虚拟内存中的: 关于虚拟内存内核维护了一个页表(page table),用来表示虚拟内存对物理内存地址或者磁盘(交换区,swap area)间的一种映射关系.并非所有的虚拟地址都需要在物理内存上映

Java中内存分配方式

摘自 Think in java 1.寄存器 这是最快的存储区,它位于处理器的内部,不能人为控制. 2.堆栈     位于RAM,但可以通过堆栈指针从处理器那里获取直接支持.堆栈指针向下移动,就分配新的内存,向上移动,则释放那些内存.这种方式分配内存快速有效,仅次于寄存器. 所以java必须知道存储在堆栈内所有对象的确切生命周期.对象引用 和 基本数据类型会放到堆栈中. 3.堆         一种通过的内存池,也位于RAM.用于存放所有的java对象.堆和堆栈的区别就在于编译器不需要知道数据在

C中内存分配方式[转载]

在C 中,内存分成5个区,他们分别是堆.栈.自由存储区.全局/静态存储区和常量存储区. 一.简介: 1.栈,就是那些由编译器在需要的时候分配,在无需的时候自动清除的变量的存储区.里面的变量通常是局部变量.函数参数等. 2.堆,就是那些由new分配的内存块,他们的释放编译器不去管,由我们的应用程式去控制,一般一个new就要对应一个delete.假如程式员没有释放掉,那么在程式结束后,操作系统会自动回收. 3.自由存储区,就是那些由malloc等分配的内存块,他和堆是十分相似的,但是他是用free来