【DeepLearning】一些资料

记录下,有空研究。

http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml

http://nlp.stanford.edu/courses/NAACL2013/

Fast and Robust Neural Network Joint Models for Statistical Machine Translation

ACL2014的论文列表

http://blog.sina.com.cn/s/blog_49b5f5080101dinc.html

ACL 2014 Accepted Long Papers
A Bayesian Mixed Effects Model of Literary Character

David Bamman, Ted Underwood and Noah A. Smith

A chance corrected measure of inter-annotator agreement for syntax

Arne Skjærholt
A Decision-Theoretic Approach to Natural Language Generation

Nathan McKinley and Soumya Ray

A Discriminative Graph-Based Parser for the Abstract Meaning Representation

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris Dyer and Noah A. Smith

A Generalized Language Model as the Combination of Skipped n-grams and Modified Kneser Ney Smoothing

Rene Pickhardt, Thomas Gottron, Martin Körner, Paul Georg Wagner, Till Speicher and Steffen Staab

A Joint Graph Model for Pinyin-to-Chinese Conversion with Typo Correction

Zhongye Jia and Hai Zhao

A Lagrangian Relaxation Algorithm for Bidirectional Word Alignment

Alexander M. Rush, Michael Collins, Yin-Wen Chang and John DeNero

A Linear-Time Bottom-Up Discourse Parser with Constraints and Post-Editing

Vanessa Wei Feng and Graeme Hirst

A practical but linguistically-motivated approach to compositional distributional semantics

Denis Paperno, The Nghia Pham and Marco Baroni

A Provably Correct Learning Algorithm for Latent-Variable PCFGs

Shay B. Cohen and Michael Collins

A Recursive Recurrent Neural Network for Statistical Machine Translation

Shujie Liu, Nan Yang, Mu Li and Ming Zhou

A Robust Approach to Aligning Heterogeneous Lexical Resources

Mohammad Taher Pilehvar and Roberto Navigli

A Semiparametric Gaussian Copula Regression Model for Predicting Financial Risks from Earnings Calls

William Yang Wang and Zhenhao Hua

A Sense-Based Translation Model for Statistical Machine Translation

Deyi Xiong and Min Zhang

A Sentence Model based on Convolutional Neural Networks

Nal Kalchbrenner, Edward Grefenstette and Phil Blunsom

A Step-wise Usage-based Method for Inducing Polysemy-aware Verb Classes

Daisuke Kawahara, Daniel Peterson and Martha Palmer

A Study of Concept-based Weighting Regularization for Medical Records Search

Yue Wang, Xitong Liu and Hui Fang

A Unified Model for Soft Linguistic Reordering Constraints in Statistical Machine Translation

Junhui Li, Yuval Marton, Philip Resnik and Hal Daumé III

Abstractive Summarization of Spoken and Written Conversations Based on Phrasal Queries

Yashar Mehdad, Giuseppe Carenini and Raymond T. NG

Active Learning with Efficient Feature Weighting Methods for Improving Data Quality and Classification Accuracy

Justin Martineau, Lu Chen, Doreen Cheng and Amit Sheth

Adaptive Quality Estimation for Document-Specific MT Post-editing

Fei Huang, Jian-Ming Xu and Abraham Ittycheriah

Adaptive Quality Estimation for Machine Translation

Marco Turchi, Antonios Anastasopoulos, José Guilherme Camargo de Souza and Matteo Negri

Ambiguity-aware Ensemble Training for Semi-supervised Dependency Parsing

Zhenghua Li, Min Zhang and Wenliang Chen

Anchors Regularized: Adding Robustness and Extensibility to Scalable Topic-Modeling Algorithms

Thang Nguyen, Yuening Hu and Jordan Boyd-Graber

Approximation Strategies for Multi-Structure Sentence Compression

Kapil Thadani

Aspect Extraction with Automated Prior Knowledge Learning

Zhiyuan Chen, Arjun Mukherjee and Bing Liu

Automatic Keyphrase Extraction: A Survey

Kazi Saidul Hasan and Vincent Ng

Behavior of Negation Words in Modifying Sentiment

Xiaodan Zhu, Hongyu Guo, Saif Mohammad and Svetlana Kiritchenko

Bilingual Active Learning for Relation Classification via Pseudo Parallel Corpora

Longhua Qian and Guodong Zhou

Bilingually-constrained Phrase Embeddings for Machine Translation

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou and Chengqing Zong

Bootstrapping into Filler-Gap: An Acquisition Story

Marten van Schijndel and Micha Elsner

Can You Repeat That? Using Word Repetition to Improve Spoken Term Detection

Jonathan Wintrode and Sanjeev Khudanpur

Character-Level Chinese Dependency Parsing

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu

Collective Tweet Wikification based on Semi-supervised Graph Regularization

Hongzhao Huang, Yunbo Cao, Xiaojiang Huang, Heng Ji and Chin-Yew Lin

Comparing Multi-label Classification with Reinforcement Learning for Summarisation of Time-series Data

Dimitra Gkatzia, Helen Hastie and Oliver Lemon

ConnotationWordNet: Learning Connotation of the Word+Sense Network

Leman Akoglu, Jun Seok Kang, Song Feng and Yejin Choi

Context-aware Learning for Sentence-level Sentiment with Posterior Regularization

Bishan Yang and Claire Cardie

Context-dependent Semantic Parsing for Time Expressions

Kenton Lee, Yoav Artzi, Jesse Dodge and Luke Zettlemoyer

Correcting Preposition Errors in Learner English Using Error Case Frames and Feedback Messages

Ryo Nagata, Mikko Vilenius and Edward Whittaker

CoSimRank: A Flexible & Efficient Graph-Theoretic Similarity Measure

Sascha Rothe and Hinrich Schuetze

Cross-narrative Temporal Ordering of Medical Events

Preethi Raghavan, Eric Fosler-Lussier, Noemie Elhadad and Albert Lai

Discourse Complements Lexical Semantics for Non-factoid Answer Reranking

Peter Jansen, Mihai Surdeanu and Peter Clark

Discovering Latent Structure in Task-Oriented Dialogues

Ke Zhai and Jason Williams

Distant Supervision for Relation Extraction with Matrix Completion

Miao Fan, Deli Zhao, Qiang Zhou, Zhiyuan Liu, Thomas Fang Zheng and Edward Y. Chang

Don‘t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Georgiana Dinu, Germán Kruszewski and Marco Baroni

Encoding Explicit Relation Requirements for Relation Extraction via Joint Inference

Liwei Chen, Y. Feng and Dongyan Zhao

Enhancing Grammatical Cohesion: Generating Transitional Expressions for SMT

Mei Tu, Yu Zhou and Chengqing Zong

Exploiting Timelines to Enhance Multi-document Summarization

Jun-Ping Ng, Yan Chen, Min-Yen Kan and Zhoujun Li

Extracting Opinion Targets and Opinion Words from Online Reviews with Graph Co-ranking

Kang Liu, Liheng Xu and Jun Zhao

Fast and Robust Neural Network Joint Models for Statistical Machine Translation

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz and John Makhoul

Generating Code-switched Text for Lexical Learning

Igor Labutov and Hod Lipson

Grammatical Relations in Chinese: GB-Ground Extraction and Data-Driven Parsing

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding and Xiaojun Wan

Graph-based Semi-Supervised Learning of Translation Models from Monolingual Data

Avneesh Saluja, Hany Hassan, Kristina Toutanova and Chris Quirk

Hierarchical Summarization: Scaling Up Multi-Document Summarization

Janara Christensen, Stephen Soderland, Gagan Bansal and Mausam Mausam

How to make words with vectors: Phrase generation in distributional semantics

Georgiana Dinu and Marco Baroni

Hybrid Simplification using Deep Semantics and Machine Translation

Shashi Narayan and Claire Gardent

Incremental Joint Extraction of Entity Mentions and Relations

Qi Li and Heng Ji

Inferring User Political Preferences from Streaming Communications

Svitlana Volkova, Glen Coppersmith and Benjamin Van Durme

Information Extraction over Structured Data: Question Answering with Freebase

Xuchen Yao and Benjamin Van Durme

Interpretable Semantic Vectors from a Joint Model of Brain- and Text- Based Meaning

Alona Fyshe, Partha Pratim Talukdar, Brian Murphy and Tom M Mitchell

Is this a wampimuk? Linking distributional semantics to the world

Angeliki Lazaridou, Elia Bruni and Marco Baroni

Joint POS Tagging and Transition-based Constituent Parsing in Chinese with Non-local Features

Zhiguo Wang and Nianwen Xue

Joint Syntactic and Semantic Parsing with Combinatory Categorial Grammar

Jayant Krishnamurthy and Tom Mitchell

Kneser-Ney Smoothing on Expected Counts

Hui Zhang and David Chiang

Knowledge-Based Question Answering as Machine Translation

Junwei Bao, Nan Duan, Ming Zhou and Tiejun Zhao

Language-Aware Truth Assessment of Fact Candidates

Ndapandula Nakashole and Tom M. Mitchell

Lattice Desegmentation for Statistical Machine Translation

Mohammad Salameh, Colin Cherry and Greg Kondrak

Learning Continuous Phrase Representations for Translation Modeling

Jianfeng Gao, Xiaodong He, Scott Wen-tau Yih and Li Deng

Learning Grounded Meaning Representations with Autoencoders

Carina Silberer and Mirella Lapata

Learning New Semi-Supervised Deep Auto-encoder Features for Statistical Machine Translation

Shixiang Lu

Learning Semantic Hierarchies via Word Embeddings

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng WANG and Ting Liu

Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Bing Qin and Ting Liu

Learning Soft Linear Constraints with Application to Citation Field Extraction

Sam Anzaroot, Alexandre Passos, David Belanger and Andrew McCallum

Learning Structured Perceptrons for Coreference Resolution with Latent Antecendents and Non-local Features

Anders Björkelund and Jonas Kuhn

Learning to Automatically Solve Algebra Word Problems

Nate Kushman, Luke Zettlemoyer, Regina Barzilay and Yoav Artzi

Learning to Predict Distributions of Words Across Domains

Danushka Bollegala, David Weir and John Carroll

Learning Topic Representation for SMT with Neural Networks

Lei Cui, Dongdong Zhang, Shujie Liu, Qiming Chen, Mu Li and Ming Zhou

Learning Word Sense Distributions, Detecting Unattested Senses and Identifying Novel Senses Using Topic Models

Jey Han Lau, Paul Cook, Diana McCarthy, Spandana Gella and Timothy Baldwin

Less Grammar, More Features

David Hall, Greg Durrett and Dan Klein

Lexical Inference over Multi-Word Predicates: A Distributional Approach

Omri Abend, Shay Cohen and Mark Steedman

Linguistic Structured Sparsity in Text Categorization

Dani Yogatama and Noah A. Smith

Logical Inference on Dependency-based Compositional Semantics

Ran Tian, Yusuke Miyao and Takuya Matsuzaki

Looking at Unbalanced Specialized Comparable Corpora for Bilingual Lexicon Extraction

Emmanuel Morin and Amir Hazem

Low-Rank Tensors for Scoring Dependency Structures

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay and Tommi Jaakkola

Low-Resource Semantic Role Labeling

Matthew R. Gormley, Margaret Mitchell, Benjamin Van Durme and Mark Dredze

Max-Margin Tensor Neural Network for Chinese Word Segmentation

Wenzhe Pei, Tao Ge and Baobao Chang

Medical Relation Extraction With Manifold Models

Chang Wang and James Fan

Metaphor Detection with Cross-Lingual Model Transfer

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric Nyberg and Chris Dyer

Modelling Events through Memory-based, Open-IE Patterns for Abstractive Summarization

Daniele Pighin, Marco Cornolti, Enrique Alfonseca and Katja Filippova

Modelling function words improves unsupervised word segmentation

Mark Johnson, Anne Christophe, Emmanuel Dupoux and Katherine Demuth

Multilingual Models for Compositional Distributed Semantics

Karl Moritz Hermann and Phil Blunsom

Negation Focus Identification with Contextual Discourse Information

Bowei Zou, Guodong Zhou and Qiaoming Zhu

New Word Detection for Sentiment Analysis

Minlie Huang, Borui Ye, Yichen Wang and Xiaoyan Zhu

Nonparametric Learning of Phonological Constraints in Optimality Theory

Gabriel Doyle, Klinton Bicknell and Roger Levy

Online Learning in Tensor Space

Yuan Cao and Sanjeev Khudanpur

Opinion Mining on YouTube

Aliaksei Severyn, Olga Uryupina, Barbara Plank, Alessandro Moschitti and Katja Filippova

Pattern Dictionary of English Prepositions

Ken Litkowski

Perplexity on Reduced Corpora

Hayato Kobayashi

Political Ideology Detection Using Recursive Neural Networks

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber and Philip Resnik

Polylingual Tree-Based Topic Models for Translation Domain Adaptation

Yuening Hu, Ke Zhai, Vladimir Eidelman and Jordan Boyd-Graber

Predicting Instructor‘s Intervention in MOOC forums

Snigdha Chaturvedi, Dan Goldwasser and Hal Daumé III

Predicting the relevance of distributional semantic similarity with contextual information

Clémentine Adam, Philippe Muller and Cécile Fabre

Probabilistic Soft Logic for Semantic Textual Similarity

Islam Beltagy, Katrin Erk and Raymond Mooney

Product Feature Mining: Semantic Clues versus Syntactic Constituents

Liheng Xu, Siwei Lai, Kang Liu and Jun Zhao

Prompt Adherence Measurement in Argumentative Text

Isaac Persing and Vincent Ng

Query-Chain Focused Summarization

Tal Baumel, Michael Elhadad and Raphael Cohen

Recurrent Neural Networks for Word Alignment Model

Akihiro Tamura, Taro Watanabe and Eiichiro Sumita

ReNew: A Semi-Supervised Framework for Generating Domain-Specific Lexicons and Sentiment Analysis

Zhe Zhang and Munindar P. Singh

Representation Learning for Text-level Discourse Parsing

Yangfeng Ji and Jacob Eisenstein

Response-based Learning for Grounded Machine Translation

Stefan Riezler, Patrick Simianer and Carolin Haas

Robust Domain Adaptation for Relation Extraction via Clustering Consistency

Minh Luan Nguyen, Ivor W. Tsang, Kian Ming A. Chai and Hai Leong Chieu

Robust Entity Clustering via Phylogenetic Inference

Nicholas Andrews, Jason Eisner and Mark Dredze

Semantic Frame Identification with Distributed Word Representations

Karl Moritz Hermann, Dipanjan Das, Jason Weston and Kuzman Ganchev

Semantic Parsing via Paraphrasing

Jonathan Berant and Percy Liang

Shallow Analysis Based Assessment of Syntactic Complexity for Automated Speech Scoring

Suma Bhat, Huichao Xue and Su-Youn Yoon

Shift-Reduce CCG Parsing with a Dependency Model

Wenduan Xu, Yue Zhang and Stephen Clark

Simple Negation Scope Resolution Through Deep Parsing: A Semantic Solution to a Semantic Problem

Woodley Packard, Emily M. Bender, Jonathon Read, Stephan Oepen and Rebecca Dridan

Single-Agent vs. Multi-Agent Techniques for Concurrent Reinforcement Learning of Negotiation Dialogue Policies

Kallirroi Georgila, Claire Nelson and David Traum

Smart Selection

Patrick Pantel, Michael Gamon and Ariel Fuxman

Sparser, Better, Faster GPU Parsing

David Hall, Taylor Berg-Kirkpatrick and Dan Klein

Spectral Unsupervised Parsing with Additive Tree Metrics

Ankur Parikh, Shay Cohen and Eric Xing

Steps to Excellence: Simple Inference with Refined Scoring of Dependency Trees

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi Jaakkola and Amir Globerson

Strategies for Multiword Expression Analysis and Dependency Parsing

Marie Candito and Matthieu Constant

Structured Learning for Taxonomy Induction with Belief Propagation

Mohit Bansal, David Burkett, Gerard de Melo and Dan Klein

Surface Realisation from Knowledge-Bases

Bikash Gyawali and Claire Gardent

Tagging The Web: Building A Robust Web Tagger with Neural Network

Ji Ma, Yue Zhang and Jingbo Zhu

Text-level Discourse Dependency Parsing

Sujian Li, Liang Wang, Ziqiang Cao and Wenjie Li

That’s sick dude!: Automatic identification of word sense change across different timescales

Sunny Mitra, Ritwik Mitra, Martin Riedl, Chris Biemann, Animesh Mukherjee and Pawan Goyal

That‘s Not What I Meant! Using Parsers to Avoid Structural Ambiguities in Generated Text

Manjuan Duan and Michael White

The effect of wording on message propagation: Topic- and author-controlled natural experiments on Twitter

Chenhao Tan, Lillian Lee and Bo Pang

The Omni-word Feature and Soft Constraint for Chinese Relation Extraction

Yanping Chen, Qinghua Zheng and Wei Zhang

Toward Better Chinese Word Segmentation for SMT via Bilingual Constraints

Xiaodong Zeng, Lidia S. Chao, Derek F. Wong, Isabel Trancoso and Liang Tian

Toward Future Scenario Generation: Extracting Event Causality Exploiting Semantic Relation, Context, and Association Features

Chikara Hashimoto, Kentaro Torisawa, Julien Kloetzer, Motoki Sano, Istvan Varga, Jong-Hoon Oh and Yutaka Kidawara

Towards a General Rule for Identifying Deceptive Opinion Spam

Jiwei Li, Myle Ott, Claire Cardie and Edward Hovy

Translation Assistance by Translation of L1 Fragments in an L2 Context

Maarten van Gompel and Antal van den Bosch

Two Heads are Better than One: Crowdsourcing Translation via a Two-Step Non-Professional Collaboration towards Professionals

Rui Yan, Ellie Pavlick and Chris Callison-Burch

Two Is Bigger (and Better) Than One: the Wikipedia Bitaxonomy Project

Daniele Vannella, Tiziano Flati, Tommaso Pasini and Roberto Navigli

Unsupervised Dependency Grammar Induction with Transferring Distribution and Entropy Regularization

Xuezhe Ma and Fei Xia

Unsupervised Morphology-Based Vocabulary Expansion

Mohammad Sadegh Rasooli, Nizar Habash, Owen Rambow and Thomas Lippincot

Unsupervised Solution Post Identification from Discussion Forums

Deepak P and Karthik Visweswariah

Using Discourse Structure Improves Machine Translation Evaluation

Shafiq Joty, Lluís Màrquez, Preslav Nakov and Francisco Guzman

Validating and Extending Semantic Knowledge Bases using Video Games with a Purpose

Daniele Vannella, David Jurgens, Daniele Scarfini, Domenico Toscani and Roberto Navigli

Vector space semantics with frequency-driven motifs

Shashank Srivastava and Eduard Hovy

Weak semantic context helps phonetic learning in a model of infant language acquisition

Stella Frank, Naomi Feldman and Sharon Goldwater

Weakly Supervised User Profile Extraction from Twitter

Jiwei Li, Alan Ritter and Eduard Hovy

Zero-shot Entity Extraction from Web Pages

Panupong Pasupat and Percy Liang

时间: 2024-10-13 22:03:31

【DeepLearning】一些资料的相关文章

DeepLearning(一)最佳环境搭配与入门资料

[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 最近由于毕业论文的原因搞得学习进度有点慢,过了5月份再加快进度. DeepLearning,也就是我们所说的深度学习.深度学习是机器学习的一个分支,属于无监督学习,近年来深度学习在语音识别和图像识别等领域取得了巨大的成功. 深度学习的本质,就是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习数据中更加有用的特征.也就是说,训练数据的特征不用我们去提取了,深度学习帮我们干了

关于机器学习和深度学习的资料

声明:转来的,原文出处:http://blog.csdn.net/achaoluo007/article/details/43564321 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. &

机器学习书籍资料推荐

本文为转载,源地址为:http://blog.chinaunix.net/uid-10314004-id-3594337.html 机器学习的资料较多,初学者可能会不知道怎样去有效的学习,所以对这方面的资料进行了一个汇总,希望能够对和我一样的初学者有一定的借鉴. 1. 数学基础    机器学习是构建于数学的基础之上的,因此只有把数学的基本功打好,才能够在机器学习领域有长远的发展.正所谓”勿在浮沙筑高台“. 微积分:微积分学教程 (F.M.菲赫金哥尔茨)俄罗斯的数学书 线性代数:Linear Al

【深度学习Deep Learning】资料大全

转载:http://www.cnblogs.com/charlotte77/p/5485438.html 最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books Deep Learning66 by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by

【转】自学成才秘籍!机器学习&amp;深度学习经典资料汇总

小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Sc

2012-4-17&nbsp;DBN网上资料2(转载)

2012-4-17 DBN网上资料2(转载)(2012-04-17 09:37:24) 转载▼ 分类: DBN(deeplearning) [原文链接:http://demonstrate.ycool.com/post.3006074.html] 为了更好的在下次讨论班讲述 DBN,特开此帖.主要是 介绍 DBN 的相关知识,做一份逻辑上完整的东西.参考 Hinton 的东西来讲吧: reading list RBM 相关 [1] 关于 Boltzmann machine 的 scholarwi

机器学习&amp;深度学习资料分享

感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber

近200篇机器学习&amp;amp;深度学习资料分享

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室

Deep Learning 博文推荐和学习资料

1.     http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/default.html?page=1 博客园tornadomeet的博文,楼主参加了天津的DL学习,里面有很全的DL学习笔记,很值得学习. 2.     http://blog.csdn.net/zouxy09/article/details/8781396 CSDN的zhouxy09(甘苦人生)的博文,楼主对DL系列的概述很详细 3.     http://blog.c