双六---扩展欧几里得---挑战编程

感谢http://www.cnblogs.com/oscar-cnblogs/p/6428920.html

题目描述 :
一个双六(类似大富翁的桌上游戏)上面有向前 向后无限延续的格子, 每个格子都写有整数。其中0号格子是起点,1号格子
是终点。而骰子上只有a,b,-a,-b四个整数,所以根据a和b的值的不同,有可能无法到达终点
掷出四个整数各多少次可以到达终点呢?如果解不唯一,输出任意一组即可。如果无解 输出-1

问题就是求 ax+by = c的通解

证明一: 一定存在 x, y 使得 ax+by = k*gcd(a, b)

设 a = gcd(a, b)*ra; b = gcd(a, b)*rb;

∵gcd(ra, rb) = 1

∴ax+by = (x*ra+y*rb)*gcd(a, b) = k*gcd(a, b) ----->k = (x*ra+y*rb)

有∵ gcd(ra, rb) = 1 由贝祖定理 一定存在 x, y  (x*ra+y*rb = gcd(ra, rb) = 1)

所以题目中的c = 1

1、那么一定要 a 和b互质 才能得到1

2、ax+by = 1是一个不定方程

对于求其中的一组特解  可以使用 扩展欧几里得

extgcd(int a, int b, int &x, int &y)

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
#include <algorithm>
#define READ() freopen("in.txt", "r", stdin);
#define MAXV 2007
#define MAXE 20007
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
///扩展欧几里得

int extgcd(int a, int b, int &x, int &y)///c++的引用代入 也可以用指针
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int ans = extgcd(b, a%b, x, y);
    int tmp = x;
    x = y;
    y = tmp - a/b*y;
    return ans;
}
///更简洁的写法 书上的 直接将y传到x的位置 x传到y的位置然后y再-a/b*y
int Extgcd(int a, int b, int &x, int &y)
{
    int d = a;
    if (b != 0)
    {
        d = Extgcd(b, a%b, y, x);
        y -= a/b*x;
    }
    else
    {
        x = 1;
        y = 0;
    }
    return d;
}

int main()
{
    //READ()
    int a, b, x, y;
    int cnt[4] = {0};
    scanf("%d%d", &a, &b);
    if (extgcd(a, b, x, y) != 1)
    {
        cout << -1 << endl;
        return 0;
    }
    if (x > 0) cnt[0] = x;
    else if (x < 0) cnt[2] = -x;
    if (y > 0) cnt[1] = y;
    else if (y < 0) cnt[3] = -y;
    for (int i = 0; i < 4; i++)
        cout << cnt[i];
    cout << endl;
    return 0;
}
时间: 2024-10-29 05:51:05

双六---扩展欧几里得---挑战编程的相关文章

UVa 11768 格点判定(扩展欧几里得求线段整点)

https://vjudge.net/problem/UVA-11768 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB穿过多少个整点. 思路: 做了这道题之后对于扩展欧几里得有了全面的了解. 根据两点式公式求出直线 ,那么ax+by=c 中的a.b.c都可以确定下来了. 接下来首先去计算出一组解(x0,y0),因为根据这一组解,你可以写出它的任意解,其中,K取任何整数. 需要注意的是,这个 a' 和 b' 是很重要的,比如说 b' ,它代表的是x每隔 b

【扩展欧几里得】BZOJ1477-青蛙的约会

一直在WA,后来我发现我把东西看反了-- [题目大意] 给出一个长度为L的环状坐标轴,两个点开始时位于(X,0).(Y,0).每次两点分别往右边移动m和n,问能否相遇? [思路] 由题意,可得: X+mt=Y+nt(mod L) (X+mt)-(Y+nt)=L*k (n-m)t+L*k=X-Y. 可以用扩展欧几里得来做.具体来说,显然要满足n-m和L的最大公约数(记为d)要整除X-Y,否则无解.这个可以在扩展欧几里得中求出. 式子可以化简为:[(n-m)/d]*t+(L/d)*k=(X-Y)/d

POJ 1061 青蛙的约会 扩展欧几里得

扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; ll exgcd(ll a, ll b, ll&x, ll&y) { if (b ==

POJ 2115 (模线性方程 -&gt; 扩展欧几里得)

题意: for(i=A ; i!=B ;i +=C)循环语句,问在k位操作系统中循环结束次数. 若在有则输出循环次数. 否则输出死循环. 存在这样的情况:i= 65533 :i<=2:i+= 4:时i = 2: 由模线性方程->扩展欧几里得 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <queue> using

POJ 2115 C Looooops(扩展欧几里得应用)

题目地址:POJ 2115 水题..公式很好推.最直接的公式就是a+n*c==b+m*2^k.然后可以变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod(2^k)的最小解.(真搞不懂为什么训练的时候好多人把青蛙的约会都给做出来了,这题却一直做不出来.....这两道不都是推公式然后变形吗.....) 代码如下: #include <iostream> #include <cstdio> #include <string> #incl

【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人

HDU1576(扩展欧几里得)

A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4252    Accepted Submission(s): 3277 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Input 数据的第一行是一个T

gcd,扩展欧几里得,中国剩余定理

1.gcd: int gcd(int a,int b){ return b==0?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: 1 10 2 3 1 2 3 2 3 5 8 1 2 3 4 5 6 7 8 97 89 67 61 59 53 47 88 12 1 2 3 4 5 6 7 8 9

【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)

题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. --信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳到一格才行,所以说 \(x+mt=y+nt(mod l) \) \((x-y)+(m-n)t=0(mod l)\) \((m-n)t+ls=(y-x)  s属于整数集\) 令a=n-m,b=l,c=gcd(a,b),d=x-y 则有\( at+bs=d\) 扩展欧几里得求解. 设c=gcd(a,b)