cpu利用率和cpu 队列

SIP的第四期结束了,因为控制策略的丰富,早先的的压力测试结果已经无法反映在高并发和高压力下SIP的运行状况,因此需要重新作压力测试。跟在测试人员后面做了快一周的压力测试,压力测试的报告也正式出炉,本来也就算是告一段落,但第二天测试人员说要修改报告,由于这次作压力测试的同学是第一次作,有一个指标没有注意,因此需要修改几个测试结果。那个没有注意的指标就是load average,他和我一样开始只是注意了CPU,内存的使用状况,而没有太注意这个指标,这个指标与他们通常的限制(10左右)有差别。重新测试的结果由于这个指标被要求压低,最后的报告显然不如原来的好看。自己也没有深入过压力测试,但是觉得不搞明白对将来机器配置和扩容都会有影响,因此去问了DBA和SA,得到的结果相差很大,看来不得不自己去找找问题的根本所在了。

通过下面的几个部分的了解,可以一步一步的找出Load Average在压力测试中真正的作用。

CPU时间片

为了提高程序执行效率,大家在很多应用中都采用了多线程模式,这样可以将原来的序列化执行变为并行执行,任务的分解以及并行执行能够极大地提高程序的运行效率。但这都是代码级别的表现,而硬件是如何支持的呢?那就要靠CPU的时间片模式来说明这一切。程序的任何指令的执行往往都会要竞争CPU这个最宝贵的资源,不论你的程序分成了多少个线程去执行不同的任务,他们都必须排队等待获取这个资源来计算和处理命令。先看看单CPU的情况。下面两图描述了时间片模式和非时间片模式下的线程执行的情况:


图 1 非时间片线程执行情况


图 2 非时间片线程执行情况

在图一中可以看到,任何线程如果都排队等待CPU资源的获取,那么所谓的多线程就没有任何实际意义。图二中的CPU Manager只是我虚拟的一个角色,由它来分配和管理CPU的使用状况,此时多线程将会在运行过程中都有机会得到CPU资源,也真正实现了在单CPU的情况下实现多线程并行处理。

多CPU的情况只是单CPU的扩展,当所有的CPU都满负荷运作的时候,就会对每一个CPU采用时间片的方式来提高效率。

Linux的内核处理过程中,每一个进程默认会有一个固定的时间片来执行命令(默认为1/100秒),这段时间内进程被分配到CPU,然后独占使用。如果使用完,同时未到时间片的规定时间,那么就主动放弃CPU的占用,如果到时间片尚未完成工作,那么CPU的使用权也会被收回,进程将会被中断挂起等待下一个时间片。

CPU利用率和Load Average的区别

压力测试不仅需要对业务场景的并发用户等压力参数作模拟,同时也需要在压力测试过程中随时关注机器的性能情况,来确保压力测试的有效性。当服务器长期处于一种超负荷的情况下运行,所能接收的压力并不是我们所认为的可接受的压力。就好比项目经理在给一个人估工作量的时候,每天都让这个人工作12个小时,那么所制定的项目计划就不是一个合理的计划,那个人迟早会垮掉,而影响整体的项目进度。

CPU利用率在过去常常被我们这些外行认为是判断机器是否已经到了满负荷的一个标准,看到50%-60%的使用率就认为机器就已经压到了临界了。CPU利用率,顾名思义就是对于CPU的使用状况,这是对一个时间段内CPU使用状况的统计,通过这个指标可以看出在某一个时间段内CPU被占用的情况,如果被占用时间很高,那么就需要考虑CPU是否已经处于超负荷运作,长期超负荷运作对于机器本身来说是一种损害,因此必须将CPU的利用率控制在一定的比例下,以保证机器的正常运作。

Load Average是CPU的Load,它所包含的信息不是CPU的使用率状况,而是在一段时间内CPU正在处理以及等待CPU处理的进程数之和的统计信息,也就是CPU使用队列的长度的统计信息。为什么要统计这个信息,这个信息的对于压力测试的影响究竟是怎么样的,那就通过一个类比来解释CPU利用率和Load Average的区别以及对于压力测试的指导意义。

我们将CPU就类比为电话亭,每一个进程都是一个需要打电话的人。现在一共有4个电话亭(就好比我们的机器有4核),有10个人需要打电话。现在使用电话的规则是管理员会按照顺序给每一个人轮流分配1分钟的使用电话时间,如果使用者在1分钟内使用完毕,那么可以立刻将电话使用权返还给管理员,如果到了1分钟电话使用者还没有使用完毕,那么需要重新排队,等待再次分配使用。


图 3 电话使用场景

上图中对于使用电话的用户又作了一次分类,1min的代表这些使用者占用电话时间小于等于1min,2min表示使用者占用电话时间小于等于2min,以此类推。根据电话使用规则,1min的用户只需要得到一次分配即可完成通话,而其他两类用户需要排队两次到三次。

电话的利用率 = sum (active use cpu time)/period

每一个分配到电话的使用者使用电话时间的总和去除以统计的时间段。这里需要注意的是是使用电话的时间总和(sum(active use cpu time)),这与占用时间的总和(sum(occupy cpu time))是有区别的。(例如一个用户得到了一分钟的使用权,在10秒钟内打了电话,然后去查询号码本花了20秒钟,再用剩下的30秒打了另一个电话,那么占用了电话1分钟,实际只是使用了40秒)

电话的Average Load体现的是在某一统计时间段内,所有使用电话的人加上等待电话分配的人一个平均统计。

电话利用率的统计能够反映的是电话被使用的情况,当电话长期处于被使用而没有的到足够的时间休息间歇,那么对于电话硬件来说是一种超负荷的运作,需要调整使用频度。而电话Average Load却从另一个角度来展现对于电话使用状态的描述,Average Load越高说明对于电话资源的竞争越激烈,电话资源比较短缺。对于资源的申请和维护其实也是需要很大的成本,所以在这种高Average Load的情况下电话资源的长期“热竞争”也是对于硬件的一种损害。

低利用率的情况下是否会有高Load Average的情况产生呢?理解占有时间和使用时间就可以知道,当分配时间片以后,是否使用完全取决于使用者,因此完全可能出现低利用率高Load Average的情况。由此来看,仅仅从CPU的使用率来判断CPU是否处于一种超负荷的工作状态还是不够的,必须结合Load Average来全局的看CPU的使用情况和申请情况。

所以回过头来再看测试部对于Load Average的要求,在我们机器为8个CPU的情况下,控制在10 Load左右,也就是每一个CPU正在处理一个请求,同时还有2个在等待处理。看了看网上很多人的介绍一般来说Load简单的计算就是2* CPU个数减去1-2左右(这个只是网上看来的,未必是一个标准)。

补充几点:

1.对于CPU利用率和CPU Load Average的结果来判断性能问题。首先低CPU利用率不表明CPU不是瓶颈,竞争CPU的队列长期保持较长也是CPU超负荷的一种表现。对于应用来说可能会去花时间在I/O,Socket等方面,那么可以考虑是否后这些硬件的速度影响了整体的效率。

这里最好的样板范例就是我在测试中发现的一个现象:SIP当前在处理过程中,为了提高处理效率,将控制策略以及计数信息都放置在Memcached Cache里面,当我将Memcached Cache配置扩容一倍以后,CPU的利用率以及Load都有所下降,其实也就是在处理任务的过程中,等待Socket的返回对于CPU的竞争也产生了影响。

2.未来多CPU编程的重要性。现在服务器的CPU都是多CPU了,我们的服务器处理能力已经不再按照摩尔定律来发展。就我上面提到的电话亭场景来看,对于三种不同时间需求的用户来说,采用不同的分配顺序,我们可看到的Load Average就会有不同。假设我们统计Load的时间段为2分钟,如果将电话分配的顺序按照:1min的用户,2min的用户,3min的用户来分配,那么我们的Load Average将会最低,采用其他顺序将会有不同的结果。所以未来的多CPU编程可以更好的提高CPU的利用率,让程序跑的更快。

以上所提到的内容未必都是很准确或者正确,如果有任何的偏差也请大家指出,可以纠正一些不清楚的概念。

时间: 2025-01-04 19:14:16

cpu利用率和cpu 队列的相关文章

linux下C语言实现求CPU利用率

第一节   祸起 本来就是想通过写个小程序测试CPU利用率从而可以检验其他的工具性能之类的数据,后来参照IPbench中的cpu_target_lukem插件实现我们的功能,原理很简单:就是我们给程序设置了极低的优先级,如果有任何计算任务都会打断它,而如果没有计算任务,我们的程序就会占用cpu时间,所以我们的程序的运行时间基本上可以算作CPU的闲暇时间. 所以我们计算总的CPU利用率的方法就是  : CPU利用率 = 1 - 程序占用cpu时间/程序总的运行时间. 主要功能实现代码如下: [cp

区分cpu负载和cpu利用率

概述 做压力测试的时候,我们经常会关注两个指标,CPU利用率和CPU负载 CPU负载(load) 指的是等待处理的任务队列 load-average 指的是最近1分钟.5分钟和15分钟的系统平均负载 在Linux系统中,可以通过命令看到系统平均负载load-average的输出 uptime top saq -q 原文地址:https://www.cnblogs.com/Zfc-Cjk/p/11528936.html

Linux下如何查看高CPU占用率线程 LINUX CPU利用率计算

目录(?)[-] proc文件系统 proccpuinfo文件 procstat文件 procpidstat文件 procpidtasktidstat文件 系统中有关进程cpu使用率的常用命令 ps 命令 top命令 单核情况下Cpu使用率的计算 基本思想 总的Cpu使用率计算 计算方法 某一进程Cpu使用率的计算 计算方法 实验数据 某一线程Cpu使用率的计算 计算方法 实验数据 多核情况下cpu使用率的计算 实验一 描述 数据一 数据二 实验二 描述 数据一 数据二 主要问题 Java 系统

性能分析Linux服务器CPU利用率(转)

1.  指标范围 1.1  User mode CPU utilization+ System mode CPU utilization 合理值:60-85%,如果在一个多用户系统中us+sy时间超过85%,则进程可能要花时间在运行队列中等待,响应时间和业务吞吐量会受损害:us过大,说明有用户进程占用很多cpu时间,需要进一步的分析其它软硬件因素:sy过大,说明系统管理方面花了很多时间,说明该系统中某个子系统产生了瓶颈,需要进一步分析其它软硬件因素. 1.2  Wa(wait) 参考值:小于25

erlang 调度器CPU利用率低排查

-问题起因 近期线上一组服务中,个别节点服务器CPU使用率很低,只有其他1/4.排除业务不均,曾怀疑是系统top统计错误,从Erlang调度器的利用率调查 找到通过erlang:statistics(scheduler_wall_time) 查看服务器CPU低的机器调度器实际的CPU利用率很高接近100%,而其他机器都不到30%. 分析不同业务服务,发现只有在node 中进程数采用调度器CPU利用低这个问题. -Whatsapp 案例 erlang方面能找到案例不多,幸运的发现whatsapp

HighChartS cpu利用率动态图(Java版)

来源:http://www.cnblogs.com/haifg/p/3217699.html 最近项目需要监控服务器cpu的利用率,并做成动态图.在网上查找了一些资料,最终选择了HighChartS来做动态图. HIghChartS官网:http://www.highcharts.com/ HighCharts Demo:http://www.highcharts.com/demo/ 项目中参考的Demo:http://www.highcharts.com/demo/dynamic-update

shell CPU 利用率 内存利用率

#!/bin/bash cpu_usage_idle=`top -b -n 1 | grep Cpu | awk '{print $5}' | cut -f 1 -d "."` let cpu_usage=100-$cpu_usage_idle mem_total=`awk '/MemTotal/{total=$2}/MemFree/{free=$2}END{print (total-free)/1024}'  /proc/meminfo` mem_usage=`echo ${mem_

MongoDB CPU 利用率高排查

MongoDB CPU 利用率高,怎么破? 经常有用户咨询「MongoDB CPU 利用率很高,都快跑满了」,应该怎么办? 遇到这个问题,99.9999% 的可能性是「用户使用上不合理导致」,本文主要介绍从应用的角度如何排查 MongoDB CPU 利用率高的问题 Step1: 分析数据库正在执行的请求 用户可以通过 Mongo Shell 连接,并执行 db.currentOp() 命令,能看到数据库当前正在执行的操作,如下是该命令的一个输出示例,标识一个正在执行的操作.重点关注几个字段 cl

jstack命令定位java程序CPU利用率高的代码位置

高手是怎么使用jstack精确找到异常代码的(java程序CPU利用率高的情况) 请jstack神器来帮忙 本文介绍Linux环境下使用jstack定位问题的秘笈s1.[top命令]找到CPU利用率持续比较高的进程,获取[进程号],此处PID为 1289112891 s2.[ps p 12891 -L -o pcpu,pid,tid,time,tname,cmd 命令]找到上述进程中,CPU利用率比较高的[线程号TID](十进制数),此处为 12946ps p 12891 -L -o pcpu,