正定矩阵(Positive-definite Matrix)

原文链接

正定矩阵是自共轭矩阵的一种。正定矩阵类似复数中的正实数。定义:对于对称矩阵M,当且仅当存在任意向量x,都有


若上式大于等于零,则称M为半正定矩阵。正定矩阵记为M>0。

也被称为正定二次型

正定矩阵的判定

1、所有特征值为正数(根据谱定理,若条件成立,必然可以找到对角矩阵的D和正定矩阵P,使M=P^-1DP);
2、所有的顺序主子式为正定;
3、Cholesky分解得到的矩阵,其主对角线上的元素全为正数;
4、矩阵有半双线性映射形式。

首先解释双线性映射。假设三个向量空间X, Y和Z,有Z = B(X, Y)。对于X或Y中的任意向量都有到Z的唯一映射。如果把X固定,Y中的元素就存在到Z的线性映射,反过来也一样。
所谓半双线性映射,就是它的两个参数一个是线性的,另一个是半线性的(或共轭线性)。如:

复数空间的内积都是半双线性的。
正定矩阵的性质
1、正定矩阵均可逆,且逆矩阵也为正定矩阵;
2、正定矩阵与正实数的乘积也为正定;
3、迹Tr(M)>0;
4、存在唯一的平方根矩阵B,使得:

时间: 2024-10-16 12:11:46

正定矩阵(Positive-definite Matrix)的相关文章

02-04 线性回归

目录 线性回归 一.线性回归学习目标 二.线性回归引入 三.线性回归详解 3.1 线性模型 3.2 一元线性回归 3.2.1 一元线性回归的目标函数 3.2.2 均方误差最小化--最小二乘法 3.3 多元线性回归 3.3.1 均方误差最小化--最小二乘法 3.3.2 均方误差最小化--牛顿法(TODO) 3.3.3 均方误差最小化--拟牛顿法(TODO) 3.4 多项式回归 3.5 对数线性回归 3.6 局部加权线性回归 3.7 正则化 3.7.1 L1正则化 3.7.2 L2正则化 3.7.3

如何理解正定矩阵和半正定矩阵

乍看正定和半正定会被吓得虎躯一震,因为名字取得不知所以,所以老是很排斥去理解这个东西是干嘛用的,下面根据自己和结合别人的观点解释一下什么是正定矩阵(positive definite, PD) 和半正定矩阵(positive semi-definite, PSD). 定义 首先从定义开始对PD和PSD有一个初步的概念: 正定矩阵(PD): 给定一个大小为 \(n\times n\) 的实对称矩阵 \(A\) ,若对于任意长度为 \(n\) 的非零向量 \(X\),有 \(X^TAX>0\) 恒成

cholesky分解

接着LU分解继续往下,就会发展出很多相关但是并不完全一样的矩阵分解,最后对于对称正定矩阵,我们则可以给出非常有用的cholesky分解.这些分解的来源就在于矩阵本身存在的特殊的 结构.对于矩阵A,如果没有任何的特殊结构,那么可以给出A=L*U分解,其中L是下三角矩阵且对角线全部为1,U是上三角矩阵但是对角线的值任意,将U正规化成对角线为1的矩阵,产生分解A = L*D*U, D为对角矩阵.如果A为对称矩阵,那么会产生A=L*D*L分解.如果A为正定对称矩阵,那么就会产生A=G*G,可以这么理解G

MyTestBlog

Multivariable normal distribution is a positive definite matrix. We can get (assume) Where We do a simple transformation

Note of Numerical Optimization Ch.3

目录 Numerical Optimization Ch.3 Line Search Methods Step Length Convergence of Line Search Methods Rate of Convergence Newton's Method with Hessian Modification Step-Length Selection Algorithms Numerical Optimization Ch.3 This is a note doc of Numeric

目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Title -16 Contents -14 Preface -6 Part One - Matrices 1 1 Basic properties of vectors and matrices 3 1.1 Introduction 3 1.2 Sets 3 1.3 Matrices: additio

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2

Show that the following statements are equivalent: (1). $A$ is positive. (2). $A=B^*B$ for some $B$. (3). $A=T^*T$ for some upper triangular $T$. (4). $A=T^*T$ for some upper triangular $T$ with nonnegative diagonal entries. If $A$ is positive defini

Python--线性代数篇

讲解Python在线性代数中的应用,包括: 一.矩阵创建 先导入Numpy模块,在下文中均采用np代替numpy 1 import numpy as np 矩阵创建有两种方法,一是使用np.mat函数或者np.matrix函数,二是使用数组代替矩阵,实际上官方文档建议我们使用二维数组代替矩阵来进行矩阵运算:因为二维数组用得较多,而且基本可取代矩阵. 1 >>> a = np.mat([[1, 2, 3], [4, 5, 6]]) #使用mat函数创建一个2X3矩阵 2 >>&

机器学习--线性代数基础

关闭 yunqishequ1的博客 目录视图 摘要视图 订阅 管理博客 写新文章 评论送书 | 7月书讯:众多畅销书升级!      CSDN日报20170727--<想提高团队技术,来试试这个套路!>      评论送书 | 机器学习.Java虚拟机.微信开发 机器学习--线性代数基础 2017-07-28 14:05 6人阅读 评论(0) 收藏 编辑 删除  分类: 机器x 目录(?)[+] 原文地址 数学是计算机技术的基础,线性代数是机器学习和深度学习的基础,了解数据知识最好的方法我觉得

机器学习教程 一-不懂这些线性代数知识 别说你是搞机器学习的

原文:http://www.shareditor.com/blogshow/?blogId=1 数学是计算机技术的基础,线性代数是机器学习和深度学习的基础,了解数据知识最好的方法我觉得是理解概念,数学不只是上学时用来考试的,也是工作中必不可少的基础知识,实际上有很多有趣的数学门类在学校里学不到,有很多拓展类的数据能让我们发散思维,但掌握最基本的数学知识是前提,本文就以线性代数的各种词条来做一下预热,不懂的记得百度一下. 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链