Tarjan算法学习笔记

一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法。

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M)。更好的方法是Kosaraju算法或Tarjan算法,两者的时间复杂度都是O(N+M)。

本文介绍的是Tarjan算法。

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。由定义可以得出,

Low(u)=Min

{

DFN(u),

Low(v),(u,v)为树枝边,u为v的父节点

DFN(v),(u,v)为指向栈中节点的后向边(非横叉边)

}

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

算法伪代码如下

tarjan(u)

{

DFN[u]=Low[u]=++Index       // 为节点u设定次序编号和Low初值

Stack.push(u)                 // 将节点u压入栈中

for each (u, v) in E             // 枚举每一条边

if (v is not visted)          // 如果节点v未被访问过

tarjan(v)                  // 继续向下找

Low[u] = min(Low[u], Low[v])

else if (v in S)                   // 如果节点v还在栈内

Low[u] = min(Low[u], DFN[v])

if (DFN[u] == Low[u])                      // 如果节点u是强连通分量的根

repeat

v = S.pop                  // 将v退栈,为该强连通分量中一个顶点

print v

until (u== v)

}

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

时间: 2024-11-05 14:49:29

Tarjan算法学习笔记的相关文章

算法学习笔记 递归之 快速幂、斐波那契矩阵加速

递归的定义 原文地址为:http://blog.csdn.net/thisinnocence 递归和迭代是编程中最为常用的基本技巧,而且递归常常比迭代更为简洁和强大.它的定义就是:直接或间接调用自身.经典问题有:幂运算.阶乘.组合数.斐波那契数列.汉诺塔等.其算法思想: 原问题可分解子问题(必要条件): 原与分解后的子问题相似(递归方程): 分解次数有限(子问题有穷): 最终问题可直接解决(递归边界): 对于递归的应用与优化,直接递归时要预估时空复杂度,以免出现用时过长或者栈溢出.优化递归就是以

EM算法学习笔记2:深入理解

文章<EM算法学习笔记1:简介>中介绍了EM算法的主要思路和流程,我们知道EM算法通过迭代的方法,最后得到最大似然问题的一个局部最优解.本文介绍标准EM算法背后的原理. 我们有样本集X,隐变量Z,模型参数θ,注意他们3个都是向量,要求解的log似然函数是lnp(X|θ),而这个log似然函数难以求解,我们假设隐变量Z已知,发现lnp(X,Z|θ) 的最大似然容易求解. 有一天,人们发现引入任意一个关于隐变量的分布q(Z),对于这个log似然函数,存在这样一个分解: lnp(X|θ)=L(q,θ

算法学习笔记 KMP算法之 next 数组详解

最近回顾了下字符串匹配 KMP 算法,相对于朴素匹配算法,KMP算法核心改进就在于:待匹配串指针 i 不发生回溯,模式串指针 j 跳转到 next[j],即变为了 j = next[j]. 由此时间复杂度由朴素匹配的 O(m*n) 降到了 O(m+n), 其中模式串长度 m, 待匹配文本串长 n. 其中,比较难理解的地方就是 next 数组的求法.next 数组的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀,也可看作有限状态自动机的状态,而且从自动机的角度反而更容易推导一些. "前

hdu 1269 迷宫城堡 (tarjan算法学习)

迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7056    Accepted Submission(s): 3137 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A

算法学习笔记 最短路

图论中一个经典问题就是求最短路,最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划,这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是很好理解的,理解透自己多默写几次即可记住,机试时主要的工作往往就是快速构造邻接矩阵了. 对于平时的练习,一个很厉害的 ACMer  @BenLin_BLY 说:"刷水题可以加快我们编程的速度,做经典则可以让我们触类旁通,初期如果遇见很多编不出,不妨就写伪代码,理思路,在纸上进行整体分析和一步步的演算

[算法学习笔记]直接插入排序笔记

直接插入排序概念: 带排元素放在elem[0...n-1]中,初始化时,elem[0]自成1个有序区,无序区为elem[1...n-1],从i=1起,到i=n-1,依次将elem[i]插入有序区[0...n-1]中 直接插入排序算法步骤: 1.在当前有序区域R[1,i-1]中查找R[i]的正确插入位置K(1<=K<=i-1) 2.将R[K,i-1]中的记录均向后移动 3.移动后腾出K位置,插入R[i] (最坏)时间复杂度:O(n^2) 空间复杂度:O(1) /// <summary>

八大排序算法学习笔记:冒泡排序

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法. 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 算法原理: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有

由LCS到编辑距离—动态规划入门—算法学习笔记

一切计算机问题,解决方法可以归结为两类:分治和封装.分治是减层,封装是加层. 动态规划问题同样可以用这种思路,分治. 它可以划分为多个子问题解决,那这样是不是用简单的递归就完成了?也许是的,但是这样会涉及太多的不便的操作.因为子问题有重叠! 针对这种子问题有重叠的情况的解决,就是提高效率的关键. 所以动态规划问题可以总结为:最优子结构和重叠子问题. 解决这个子问题的方式的关键就是:memoization,备忘录. 动态规划算法分以下4个步骤: 描述最优解的结构 递归定义最优解的值 按自底向上的方

八大排序算法学习笔记:插入排序(一)

插入排序     包括:直接插入排序,二分插入排序(又称折半插入排序),链表插入排序,希尔排序(又称缩小增量排序).属于稳定排序的一种(通俗地讲,就是两个相等的数不会交换位置) . 直接插入排序: 1.算法的伪代码(这样便于理解):     INSERTION-SORT (A, n)             A[1 . . n] for j ←2 to n do key ← A[ j] i ← j – 1 while i > 0 and A[i] > key do A[i+1] ← A[i]