算法只回溯思想

1、概念

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。

回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

2、基本思想

   在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

3、用回溯法解题的一般步骤:

(1)针对所给问题,确定问题的解空间:

首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。

(2)确定结点的扩展搜索规则

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

4、算法框架

(1)问题框架

设问题的解是一个n维向量(a1,a2,………,an),约束条件是ai(i=1,2,3,…..,n)之间满足某种条件,记为f(ai)。

(2)非递归回溯框架

   1: int a[n],i;
   2: 初始化数组a[];
   3: i = 1;
   4: while (i>0(有路可走)   and  (未达到目标))  // 还未回溯到头
   5: {
   6:     if(i > n)                                              // 搜索到叶结点
   7:     {   
   8:           搜索到一个解,输出;
   9:     }
  10:     else                                                   // 处理第i个元素
  11:     { 
  12:           a[i]第一个可能的值;
  13:           while(a[i]在不满足约束条件且在搜索空间内)
  14:           {
  15:               a[i]下一个可能的值;
  16:           }
  17:           if(a[i]在搜索空间内)
  18:          {
  19:               标识占用的资源;
  20:               i = i+1;                              // 扩展下一个结点
  21:          }
  22:          else 
  23:         {
  24:               清理所占的状态空间;            // 回溯
  25:               i = i –1; 
  26:          }
  27: }

(3)递归的算法框架

回溯法是对解空间的深度优先搜索,在一般情况下使用递归函数来实现回溯法比较简单,其中i为搜索的深度,框架如下:

   1: int a[n];
   2: try(int i)
   3: {
   4:     if(i>n)
   5:        输出结果;
   6:      else
   7:     {
   8:        for(j = 下界; j <= 上界; j=j+1)  // 枚举i所有可能的路径
   9:        {
  10:            if(fun(j))                 // 满足限界函数和约束条件
  11:              {
  12:                 a[i] = j;
  13:               ...                         // 其他操作
  14:                 try(i+1);
  15:               回溯前的清理工作(如a[i]置空值等);
  16:               }
  17:          }
  18:      }
  19: }

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-01 12:24:42

算法只回溯思想的相关文章

经典算法宝典——贪婪思想(五)(1)

贪婪法(Greedy)又叫登山法,它的根本思想是逐步到达山顶,即逐步获得最优解,是解决最优化问题时的一种简单但适用范围有限的策略."贪婪"可以理解为以逐步的局部最优,达到最终的全局最优. 贪婪算法没有固定的算法框架,算法设计的关键是贪婪策略的选择.一定要注意,选择的贪婪策略要具有无后向性,即某阶段状态一旦确定以后,不受这个状态以后的决策影响.也就是说某状态以后的过程不会影响以前的状态,只与当前状态有关,也称这种特性为无后效性.因此,适应用贪婪策略解决的问题类型较少,对所采用的贪婪策略一

经典算法宝典——分治思想(四)(1)

分治法(Divide and Conquer)的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的几个相似问题,以便各个击破,分而治之. 说明: 分治策略的应用很广,具体表现形式各异,比如:折半查找.合并排序.快速排序.二叉树遍历(先遍历左子树再遍历右子树).二叉排序树的查找等算法. 一.分治算法框架 1.算法设计思想 分治法求解问题的过程是,将整个问题分解成若干个小问题后分而治之.如果分解得到的子问题相对来说还太大,则可反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出方

五大经典算法之回溯法

一.基本概念 ??回溯法,又称为试探法,按选优条件向前不断搜索,以达到目标.但是当探索到某一步时,如果发现原先选择并不优或达不到目标,就会退回一步重新选择,这种达不到目的就退回再走的算法称为回溯法. 与穷举法的区别和联系: 相同点:它们都是基于试探的. 区别:穷举法要将一个解的各个部分全部生成后,才检查是否满足条件,若不满足,则直接放弃该完整解,然后再尝试另一个可能的完整解,它并没有沿着一个可能的完整解的各个部分逐步回退生成解的过程.而对于回溯法,一个解的各个部分是逐步生成的,当发现当前生成的某

经典算法宝典——动态规划思想(六)(2)

1.01背包问题 有N件物品和一个容量为V的背包,第i件物品的体积是c[i],价值是w[i].求解将哪些物品装入背包可使价值总和最大. 解析: 这是最基础的背包问题,特点是每种物品仅有一件,可以选择放或不放.用子问题定义状态,即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值.其状态转移方程便是f[i][v] = max{f[i-1][v], f[i-1][v-c[i]]+w[i]},这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的,所以有必要将它详细解

数据挖掘十大算法总结--核心思想,算法优缺点,应用领域

本文所涉算法均只概述核心思想,具体实现细节参看本博客"数据挖掘算法学习"分类下其他文章,不定期更新中.转载请注明出处,谢谢. 参考了许多资料加上个人理解,对十大算法进行如下分类: ?分类算法:C4.5,CART,Adaboost,NaiveBayes,KNN,SVM ?聚类算法:KMeans ?统计学习:EM ?关联分析:Apriori ?链接挖掘:PageRank 其中,EM算法虽可以用来聚类,但是由于EM算法进行迭代速度很慢,比kMeans性能差很多,并且KMeans算法 聚类效果

经典算法宝典——迭代思想(二)(1)

迭代法(Iteration)也称"辗转法",是一种不断用变量的旧值递推出新值的解决问题的方法. 说明: 迭代算法一般用于数值计算,比如累加.累乘都是迭代算法策略的基础应用. 利用迭代算法策略求解问题,设计工作主要有3步. (1)确定迭代模型 根据问题描述,分析得出前一个(或几个)值与其下一个值的迭代关系数学模型.当然这样的迭代关系,最终会迭代出求解的目标.确定迭代模型是解决迭代问题的关键. (2)建立迭代关系式 递推数学模型一般是带下标的字母,算法设计中要将其转化为"循环不变

八大排序算法实战:思想与实现

摘要: 所谓排序,就是根据排序码的递增或者递减顺序把数据元素依次排列起来,使一组任意排列的元素变为一组按其排序码线性有序的元素.本文将介绍八种最为经典常用的内部排序算法的基本思想与实现,包括插入排序(直接插入排序,希尔排序).选择排序(直接选择排序,堆排序).交换排序(冒泡排序,快速排序).归并排序.分配排序(基数排序),并给出各种算法的时间复杂度.空间复杂度和稳定性. 版权声明: 本文原创作者:书呆子Rico  作者博客地址:http://blog.csdn.net/justloveyou_/

八皇后问题的两个高效的算法(回溯与递归)

序言 八皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 求解八皇后问题是算法中回溯法应用的一个经典案例 回溯算法也叫试探法,它是一种系统地搜索问题的解的方法.回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试. 在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满足某种要求的可能或最优的情况,从而得到整个问题的解.回溯算法就是解决这种问题的“通用算法”,有“万能算法

排序算法的基本思想和OC代码实现

算法的基本思想和OC代码实现 一 .冒泡排序   (平均时间复杂度 o(N*N))  基本思想:两个数比较大小,较大的数下沉,较小的数冒起来. 过程:比较相邻的两个数据,如果第二个数小,就交换位置 从后向前两两比较,一直到比较最前两个数据.最终最小数被交换到起始的位置,这样第一个最小数的位置就排好了. 继续重复上述过程,依次将第2,3,….,n-1个最小数排好位置. int arr[5]={23,21,45,23,64}; int temp; for (int i=0; i<4; i++) {