(转)《深入理解java虚拟机》学习笔记9——并发编程(一)

随着多核CPU的高速发展,为了充分利用硬件的计算资源,操作系统的并发多任务功能正变得越来越重要,但是CPU在进行计算时,还需要从内存读取输出,并将计算结果存放到内存中,然而由于CPU的运算速度比内存高几个数量级,CPU内的寄存器数量和容量有限,为了不让CPU长时间处于等待内存的空闲状态,在CPU和内存之间引入了速度接近CPU的高速缓存Cache作为CPU和内存之间的缓冲。计算机硬件并发的原理如下:

Java虚拟机对并发的支持类似于计算机硬件,java虚拟机的并发支持是通过java虚拟机的内存模型来实现的。Java虚拟机的内存模型分为主内存和工作内存,程序中所有的变量都存储在主内存中,每个线程有自己的私有工作内存,工作内存中保存了被该线程使用到的变量的主内存拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量,不同线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递需要通过主内存来完成。Java虚拟机并发原理如下:

Java虚拟机内存模型中定义了8种关于主内存和工作内存的交互协议操作:

(1).lock锁定:作用于主内存的变量,把一个变量标识为一条线程独占状态。

(2).unlock解锁:作用于主内存的变量,把一个处于锁定状态的变量释放出来,释放后的变量可以被其他线程锁定。

(3).read读取:作用于主内的变量,把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。

(4).load加载:作用于工作内存的变量,把read读取操作从主内存中得到的变量值放入工作内存的变量拷贝中。

(5).use使用:作用于工作内存的变量,把工作内存中一个变量的值传递给java虚拟机执行引擎,每当虚拟机遇到一个需要使用到变量值的字节码指令时将会执行该操作。

(6).assign赋值:作用于工作内存变量,把一个从执行引擎接收到的变量的值赋值给工作变量,每当虚拟机遇到一个给变量赋值的字节码时将会执行该操作。

(7).store存储:作用于工作内存的变量,把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。

(8).write写入:作用于主内存的变量,把store操作从工作内存中得到的变量值放入主内存的变量中。

Java内存模型对上述8种操作有如下的约束:

(1).把一个变量从主内存复制到工作内存中必须顺序执行read读入操作和load载入操作。

把一个变量从工作内存同步回主内存中必须顺序执行store存储操作和write写入操作。

read和load操作之间、store和write操作之间可以插入其他指令,但是read和load操作、store和write操作必须要按顺序执行,即不允许read和load、store和write操作之一单独出现。

(2).不允许一个线程丢弃它的最近的assign赋值操作,即工作内存变量值改变之后必须同步回主内存。只有发生过assign赋值操作的变量才需要从工作内存同步回主内存。

(3).一个新变量只能在主内存中产生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,即一个变量在进行use和store操作之前,必须先执行过assgin和load操作。

(4).一个变量在同一时刻只允许一条线程对其进行lock锁定操作,但是lock锁定可以被一条线程重复执行多次,多次执行lock之后,只有执行相同次数的unlock操作变量才会被解锁。

(5).如果对一个变量执行lock锁定操作,将会清空工作内存中该变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。

(6).如果一个变量事先没有被lock锁定,则不允许对这个变量进行unlock解锁操作,也不允许对一个被别的线程锁定的变量进行unlock解锁。

(7).一个变量进行unlock解锁操作之前,必须先把此变量同步回主内存中(执行store和write操作)。

Java中的关键字volatile是java虚拟机提供的最轻量级的线程同步机制,当一个变量被声明为volatile之后,该变量将具备以下两种特性:

(1).volatile保证变量对所有线程的可见性,即任何一个线程修改了该变量的值之后,新值对于所有其他线程都是可以立即得知的。

而普通变量需要先将工作内存中的变量同步回主内存,其他线程都需要从主内存重新读取变量的值才能使用最新修改后的值。

volatile变量也可以在各个工作内存中存在不一致的情况,但由于每次使用之前都需要先刷新(工作内存变量重新执行初始化),执行引擎看不到变量不一致的情况,因此可以任务volatile变量不存在不一致的情况。

但是java中的运算并非全部都是原子操作,因此volatile变量的运行在并发下一样是线程不安全的。

由于volatile变量只能保证可见性,只有在符合如下两条规则情况才是线程安全的。

a.运算结果不依赖变量的当前值,或者能够确保只有单一线程修改变量的值。

b.变量不需要与其他其他变量共同参与不变约束。

不符合上述两条规则情况下,仍然需要通过synchronized同步关键字或者加锁机制来保证线程安全。

(2).volatile禁止指令重排序优化。

普通变量仅能保证在方法执行过程中所有依赖赋值结果的地方都能获取正确的结果,而无法保证变量赋值操作顺序与程序代码执行顺序一致。

volatile禁止指令重排序,因此volatile变量的约束如下:

a.volatile变量的操作必须按read->load->use顺序,即每次在工作内存中使用变量前必须先从主内存中刷新最新的值,以保证能看到其他线程对变量的最新修改。

b. volatile变量的操作必须按assign->store->write顺序,即每次在工作内存为变量赋值之后必须将变量的值同步回主内存,以保证让其他线程能看到变量的最新修改。

c.若线程对volatile变量A的assign或者use操作先于对volatile变量B的assign或者use操作,则线程对volatile变量A的read/load或者store/write操作也必定先于对volatile变量B的read/load或者store/write操作。

时间: 2024-10-06 14:31:23

(转)《深入理解java虚拟机》学习笔记9——并发编程(一)的相关文章

深入理解java虚拟机学习 笔记 第二章 java 内存区域和内存溢出异常

2.2 运行时区域 java虚拟机划分成若干个不同的数据区域, 1.程序计数器,字节码解释器工作时就是通过改变计数器的值来取吓一跳需要执行的字节码命令 了解 String.intern()方法 作用: 如果字符串常量池中一个包含了一个等于此String对象的字符串,则返回代表池中的这个字符串的String对象,否则将此对象包含的字符串添加到常量池中,并返回此String对象的引用. 实战 将堆的最小值 -Xms参数与最大值-Xmx参数设置为一样即可避免堆自动扩展  通过参数 -XX:+HeapD

深入理解Java虚拟机- 学习笔记 - Java内存模型与线程

除了在硬件上增加告诉缓存之外,为了使得处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果一致,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致,因此,如果存在一个计算任务依赖另外一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证.与处理器的乱序优化执行类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction

深入理解Java虚拟机 - 学习笔记 1

Java内存区域 程序计数器 (Program Counter Register) 是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支.循环.异常处理.线程恢复等基础功能都需要依赖这个计数器来完成. 在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)都只会执行一个线程中的指令.因此每个线程都需要有一个独立的程序计数器.此类内存为"线程私有"的内存. 如

深入理解Java虚拟机- 学习笔记 - 虚拟机类加载机制

虚拟机把描述类的数据从Class文件加载道内存,并对数据进行校验,转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这就是虚拟机的类加载机制.在Java里,类型的加载.连接和初始化过程都是在程序运行期间完成的,这种策略虽然会令类加载时稍微增加一些性能开销,但是会为Java应用程序提供高度的灵活性. 一.类加载的时机 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载(Loading).验证(Verification).准备(Preparation).解析(Re

深入理解java虚拟机学习笔记(一)

第二章 Java内存区域与内存溢出异常 运行时数据区域 程序计数器(Program Counter Register) 程序计数器:当前线程所执行的字节码行号指示器.各条线程之间计数器互不影响,独立存储.也称之为"线程私有"的内存. PS:当执行Native方法时,计数器值为空(Undefined).此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域. Java虚拟机栈(Java Virtual Machine Stacks) ? 描述的是

《深入理解Java虚拟机》笔记04 -- 并发锁

Java虚拟机在操作系统层面会先尽一切可能在虚拟机层面上解决竞争关系,尽可能避免真实的竞争发生.同时,在竞争不激烈的场合,也会试图消除不必要的竞争.实现这些手段的方法包括:偏向锁.轻量级锁.自旋锁.锁消除.锁膨胀等 1. 偏向锁 偏向锁是JDK1.6提出的一种锁优化方式.其核心思想是:如果程序没有竞争,则取消之前已经取得锁的线程同步操作.也就是说,若某一锁被线程获取后,便进入偏向模式,当线程再次请求这个锁时,无需再进行相关的同步操作,从而节省了操作时间.如果在此之间有其他线程进行了锁请求,则锁退

《深入Java虚拟机学习笔记》- 第18章 finally子句

本章主要介绍字节码实现的finally子句.包括相关指令以及这些指令的使用方式.此外,本章还介绍了Java源代码中finally子句所展示的一些令人惊讶的特性,并从字节码角度对这些特征进行了解释. 1.微型子例程 字节码中的finally子句表现的很像"微型子例程".Java虚拟机在每个try语句块和与其相关的catch子句的结尾处都会"调用"finally子句的子例程.finally子句结束后(这里的结束指的是finally子句中最后一条语句正常执行完毕,不包括抛

《深入Java虚拟机学习笔记》- 第4章 网络移动性

Java虚拟机学习笔记(四)网络移动性 <深入Java虚拟机学习笔记>- 第4章 网络移动性,布布扣,bubuko.com

《深入Java虚拟机学习笔记》- 第7章 类型的生命周期

一.类型生命周期的开始 如图所示 初始化时机 所有Java虚拟机实现必须在每个类或接口首次主动使用时初始化: 以下几种情形符合主动使用的要求: 当创建某个类的新实例时(或者通过在字节码中执行new指令,或者通过不明确的创建.反射.克隆和反序列化): 当调用某个类的静态方法时(即在字节码中执行invokestatic指令): 当使用某个类或接口的静态字段,或者对该字段赋值时(用final修饰的静态字段除外,它被初始化为一个编译时常量表达式): 当调用Java API中的某些反射方法: 当初始化某个

《深入Java虚拟机学习笔记》- 第13章 逻辑运算

<深入Java虚拟机学习笔记>- 第13章 浮点运算 <深入Java虚拟机学习笔记>- 第13章 逻辑运算,布布扣,bubuko.com