【LeetCode 221】Maximal Square

Given a 2D binary matrix filled with 0‘s and 1‘s, find the largest square containing all 1‘s and return its area.

For example, given the following matrix:

1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0

Return 4.

思路:

  DP,到达当前(非0)结点的最长边长square[i][j] = min(square[i-1][j-1], min(square[i-1][j], square[i][j-1])) + 1,即取左上方3个结点中值最小的一个加1。代码写的看起来好不舒服 - -!

 1 class Solution {
 2 public:
 3     int maximalSquare(vector<vector<char>>& matrix) {
 4         const int rows = matrix.size();
 5         if(rows == 0)
 6             return 0;
 7
 8         vector<vector<char> >::iterator it = matrix.begin();
 9         const int columns = (*it).size();
10
11         int square[rows][columns], ret = 0;
12
13         for(int i = 0; i < rows; i++)
14             for(int j = 0; j < columns; j++)
15                 square[i][j] = 0;
16
17         for(int i = 0; i < rows; i++){
18             if(matrix[i][0] == ‘1‘)
19             {
20                 square[i][0] = 1;
21                 ret = 1;
22             }
23         }
24
25         for(int i = 0; i < columns; i++){
26             if(matrix[0][i] == ‘1‘)
27             {
28                 square[0][i] = 1;
29                 ret = 1;
30             }
31         }
32
33         for(int i = 1; i < rows; i++)
34         {
35             for(int j = 1; j < columns; j++)
36             {
37                 square[i][j] = matrix[i][j] == ‘1‘ ? min(square[i-1][j], min(square[i][j-1], square[i-1][j-1])) + 1 : 0;
38
39                 if(square[i][j] > ret)
40                     ret = square[i][j];
41             }
42         }
43         return ret * ret;
44     }
45 };
时间: 2024-10-14 13:36:29

【LeetCode 221】Maximal Square的相关文章

【LeetCode 229】Majority Element II

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorithm should run in linear time and in O(1) space. 思路: [LeetCode 169]Majority Element 的拓展,这回要求的是出现次数超过三分之一次的数字咯,动动我们的大脑思考下,这样的数最多会存在几个呢,当然是2个嘛.因此,接着上一题的方

【LeetCode OJ】Sum Root to Leaf Numbers

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 # Definition for a  binary tree node # class TreeNode: #     def __init__(self, x): #         self.val = x #         self.left = No

【LeetCode OJ】Longest Consecutive Sequence

Problem Link: http://oj.leetcode.com/problems/longest-consecutive-sequence/ This problem is a classical problem where we can reduce the running time by the help of hash table. By given a list of numbers, we can find the longest consecutive sequence b

【LeetCode OJ】Word Ladder I

Problem Link: http://oj.leetcode.com/problems/word-ladder/ Two typical techniques are inspected in this problem: Hash Table. One hash set is the words dictionary where we can check if a word is in the dictionary in O(1) time. The other hash set is us

【leetcode系列】String to Integer (atoi)

这个我就直接上代码了,最开始把"abc123"也算作合法的了,后来查了一下atoi的定义,把这种去掉了. public class Solution { public static int atoi(String inStr) { long result = 0L; /* * 网上查了一下,atoi函数的定义是如果第一个非空格字符存在,是数字或者正负号则开始做类型转换, * 之后检测到非数字(包括结束符\0)字符时停止转换,返回整型数.否则,返回零.可能的输入情况有: 1.空字符串 *

【leetcode系列】Valid Parentheses

很经典的问题,使用栈来解决,我这里自己实现了一个栈,当然也可以直接用java自带的Stack类. 自己实现的栈代码: import java.util.LinkedList; class StackOne { LinkedList<Object> data; int top; int maxSize; StackOne(int size) { // TODO Auto-generated constructor stub top = -1; maxSize = 100; data = new

【leetcode系列】3Sum

这个题我最开始的思路是:先一个数定下来,然后在除这个数之外的集合里面找另外两个数,最后计算和.如此反复,对于N个数,需要进行N-2次循环. 我遇到的问题就是怎么找另外两个数,其实我想过参照Two Sum里面的解法,就是用Hashtable存,键值对的结构是<任意两个数的和,<下标1,下标2>>,但是构造这个Hashtable就需要O(N^2),后面真正解的时候有需要O(N^2). 参考了大牛的解法后,明白了找两个数还是用两个下标同时往中间移动比较好,下面上代码. import ja

【leetcode系列】Two Sum

解法一,我自己想的,有点弱,时间复杂度O(n^2). public class Solution { public int[] twoSum(int[] numbers, int target) { int[] result = new int[2]; for (int i = 0; i < numbers.length; i++) { for (int j = i + 1; j < numbers.length; j++) { if (numbers[i] + numbers[j] == t

【leetcode 简单】第十七题 二进制求和

实现 int sqrt(int x) 函数. 计算并返回 x 的平方根,其中 x 是非负整数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. 示例 1: 输入: 4 输出: 2 示例 2: 输入: 8 输出: 2 说明: 8 的平方根是 2.82842...,   由于返回类型是整数,小数部分将被舍去. #define PF(w) ((w)*(w)) int mySqrt(int x) { int start = 0; int end = x; double mid = 0; i