Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35961 Accepted Submission(s): 15867
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
/* ID: LinKArftc PROG: 1016.cpp LANG: C++ */ #include <map> #include <set> #include <cmath> #include <stack> #include <queue> #include <vector> #include <cstdio> #include <string> #include <utility> #include <cstdlib> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define eps 1e-8 #define randin srand((unsigned int)time(NULL)) #define input freopen("input.txt","r",stdin) #define debug(s) cout << "s = " << s << endl; #define outstars cout << "*************" << endl; const double PI = acos(-1.0); const double e = exp(1.0); const int inf = 0x3f3f3f3f; const int INF = 0x7fffffff; typedef long long ll; int n; int vis[30]; int ans[30]; bool isPrime(int x) { for (int i = 2; i * i <= x; i ++) { if (x % i == 0) return false; } return true; } void dfs(int cur, int cnt) { if (cnt > n) { for (int i = 1; i <= n; i ++) printf("%d%c", ans[i], i == n ? ‘\n‘ : ‘ ‘); return ; } for (int i = 2; i <= n; i ++) { if (!vis[i] && isPrime(i + cur)) { if (cnt == n) { if (!isPrime(i + 1)) continue; } ans[cnt] = i; vis[i] = true; dfs(i, cnt + 1); vis[i] = false; } } } int main() { int _t = 1; while (~scanf("%d", &n)) { printf("Case %d:\n", _t ++); memset(vis, 0, sizeof(vis)); vis[1] = true; ans[1] = 1; dfs(1, 2); printf("\n"); } return 0; }