【bzoj1016】 JSOI2008—最小生成树计数

http://www.lydsy.com/JudgeOnline/problem.php?id=1016 (题目链接)

题意:求图的最小生成树计数。

Solution 
  %了下题解,发现要写矩阵树,150++的程序什么鬼。于是就蒯了hzwer的简便方法。 
  将边按照权值大小排序,将权值相同的边分到一组,统计下每组分别用了多少条边。然后对于每一组进行dfs,判断是否能够用这一组中的其他边达到相同的效果。最后把每一组的方案数相乘就是答案。 
  注意并查集不要压缩路径,不然的话不好回溯。

代码:

// bzoj1016
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 31011
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std;
int getint() {
    int f=1,x=0;char ch=getchar();
    while (ch<=‘0‘ || ch>‘9‘) {if (ch==‘-‘) f=-1;ch=getchar();}
    while (ch>=‘0‘ && ch<=‘9‘) {x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}

const int maxn=1010;
struct edge {int u,v,w;}e[maxn<<2],a[maxn];
int fa[maxn],sum,n,m,cnt,tot;

bool cmp(edge a,edge b) {
    return a.w<b.w;
}
int find(int x) {
    return fa[x]==x ? x : find(fa[x]);
}
void dfs(int x,int now,int k) {
    if (now==a[x].v+1) {
        if (k==a[x].w) sum++;
        return;
    }
    int r1=find(e[now].u),r2=find(e[now].v);
    if (r1!=r2) {
        fa[r1]=r2;
        dfs(x,now+1,k+1);
        fa[r1]=r1,fa[r2]=r2;
    }
    dfs(x,now+1,k);
}
int main() {
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
    for (int i=1;i<=n;i++) fa[i]=i;
    sort(e+1,e+1+m,cmp);
    for (int i=1;i<=m;i++) {
        if (e[i].w!=e[i-1].w) {a[++cnt].u=i;a[cnt-1].v=i-1;}
        int r1=find(e[i].u),r2=find(e[i].v);
        if (r1!=r2) {fa[r1]=r2;a[cnt].w++;tot++;}
    }
    a[cnt].v=m;
    if (tot!=n-1) {printf("0");return 0;}
    for (int i=1;i<=n;i++) fa[i]=i;
    int ans=1;
    for (int i=1;i<=cnt;i++) {
        sum=0;
        dfs(i,a[i].u,0);
        ans=(ans*sum)%MOD;
        for (int j=a[i].u;j<=a[i].v;j++) {
            int r1=find(e[j].u),r2=find(e[j].v);
            if (r1!=r2) fa[r1]=r2;
        }
    }
    printf("%d",ans);
    return 0;
}

  

时间: 2024-09-29 05:08:48

【bzoj1016】 JSOI2008—最小生成树计数的相关文章

bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条    那么在另一种方案中权值为1的边也一定有n条 2.如果边权为1的边连接的点是x1,x2,x3   那么另一种方案中边权为1的边连接的也一定是x1,x2,x3  如果知道了这两条定理那就很好做了啊: 因为等权边的条数一定,那么我们就可以预处理求出不同边权的边的条数 题目很人道的保证了边权相同的边

[BZOJ1016][JSOI2008]最小生成树计数(结论题)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E’的元素个数肯定一样),那么某确定权值的边在E中出现的次数==在E‘中出现的次数 简单证明一下: 按照Kruskal算法的流程来想,首先我们知道Kruskal求一个最小生成树是正确的,那么不同的最小生成树会怎么产生呢?当然是Kruskal选择权值相同的边的顺序,很有可能选择权值相同边的顺序不同导致后

bzoj1016 [JSOI2008]最小生成树计数

Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a

BZOJ1016 JSOI2008 最小生成树计数 生成树+DFS

题意:求最小生成树的方案数,保证每个边权出现的次数小于十次. 题解:首先我们需要知道:一张图对于一个确定的边权,在任意最小生成树中出现的次数是相同的(请不要问我为什么QAQ).所以我们先求出每一种边权在MST中出现的次数,然后枚举每一个边权,暴力看取哪些边可以组出一颗MST,复杂度O(M*2^10*M/10) #include <cstdio> #include <cstring> #include <cstdlib> #include <iostream>

[BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Input 第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数.每个节点用1~n的整数编号.接下来的m行,每行包含两个整数:a, b, c,表示节点a

【最小生成树】BZOJ1016: [JSOI2008]最小生成树计数

Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了. Solution 把所有边权相同的视为边组,每一组边组在最小生成树的条数是固定的,对连通性的贡献也是固定的.(证明可以看http://www.cnblogs.com/Fatedayt/archive/2012/05/

【kruscal】【最小生成树】【搜索】bzoj1016 [JSOI2008]最小生成树计数

不用Matrix-tree定理什么的,一边kruscal一边 对权值相同的边 暴搜即可.将所有方案乘起来. 1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 int n,m; 5 struct Disjoint_Set 6 { 7 int fa[101],rank[101]; 8 void init(){for(int i=1;i<=n;i++) fa[i]=i;} 9 int findroot

【JSOI2008】【BZOJ1016】最小生成树计数

我就爱写矩阵树定理!!! 就不写暴力!!! 1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3584 Solved: 1429 [Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可

JSOI2008 最小生成树计数

题解: 最小生成树的两个性质: 1.边权相等的边的个数一定. 2.做完边权为w的所有边时,图的连通性相同. 证明: 1.边权相等的边的个数不一样的话就不会都同时是最小生成树了. 2.假设每种方法的做完边权为w的连通性不同,那么假设i边和j边没有同时被选,那么我们完全可以在一种方案中加入i边(或j边),使得连通性增强,而后面费用更大的边用的更少,这样与这是最小生成树矛盾.于是,命题得证. 代码:不知为何,下面程序有bug,什么时候再回来A掉…… 1 type node1=record 2 x,y,

BZOJ 题目1016: [JSOI2008]最小生成树计数(Kruskal+Matrix_Tree)

1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MB Submit: 3569  Solved: 1425 [Submit][Status][Discuss] Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的最小生成树可能很多,所以你只需要输出方案数对3101