题意
对一个有1e5个点,点权初值为0的树上进行4种操作:
1、结点u到结点v上的所有点权乘x。
2、结点u到结点v上所有的点权加x。
3、结点u到结点v上所有的点权取非。
4、结点u到结点v路径上点权的和。
答案模\(2^{64}\)
思路
对操作1、2树链剖分加线段树维护即可,对操作3,取非操作为:一个二进制位上都为1
的数减去当前值,即:\(2^{64}-1-x\) , 由于答案模\(2^{64}\),通过点权用unsigned long long,只需维护\(-(x+1)\) 操作即可。
Code
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5+10;
const int SZ = 1 << 20; //快速io
struct fastio {
char inbuf[SZ];
char outbuf[SZ];
fastio() {
setvbuf(stdin, inbuf, _IOFBF, SZ);
setvbuf(stdout, outbuf, _IOFBF, SZ);
}
} io;
void read(int &x) {
x=0; char ch, c=getchar();
while(c<'0' || c>'9') ch=c, c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0', c=getchar();
if(ch=='-') x=-x;
}
int n, m;
int dfn[maxn], rnk[maxn], top[maxn], tot;
int sz[maxn], son[maxn], dep[maxn], fa[maxn];
vector<int> g[maxn];
void dfs1(int x, int f) {
sz[x]=1, son[x]=0, dep[x] = dep[f]+1;
for (auto v: g[x]) {
fa[v] = x;
dfs1(v, x);
sz[x] += sz[v];
if(sz[v] > sz[son[x]]) son[x] = v;
}
}
void dfs2(int x, int topf) {
dfn[x]=++tot, rnk[tot]=x, top[x]=topf;
if(!son[x]) return;
dfs2(son[x], topf);
for (auto v: g[x]) {
if(v!=son[x])
dfs2(v, v);
}
}
typedef unsigned long long ull;
struct segTree {
struct node {
int l, r;
ull val, add, mul;
inline int length() { return r-l+1; }
}tr[maxn<<2];
void pushup(int i) {
tr[i].val = tr[i<<1].val + tr[i<<1|1].val;
}
void pushdown(int i) {
if(tr[i].add==0 && tr[i].mul==1) return;
tr[i<<1].val = tr[i<<1].val*tr[i].mul + tr[i].add*(tr[i<<1].r-tr[i<<1].l+1);
tr[i<<1|1].val = tr[i<<1|1].val*tr[i].mul + tr[i].add*(tr[i<<1|1].r-tr[i<<1|1].l+1);
tr[i<<1].add = tr[i<<1].add*tr[i].mul+tr[i].add;
tr[i<<1|1].add = tr[i<<1|1].add*tr[i].mul+tr[i].add;
tr[i<<1].mul *= tr[i].mul;
tr[i<<1|1].mul *= tr[i].mul;
tr[i].add = 0, tr[i].mul = 1;
}
void build(int l, int r, int i) {
tr[i] = node{l, r, 0, 0, 1};
if(l==r) return;
int mid = l+r>>1;
build(l, mid, i<<1);
build(mid+1, r, i<<1|1);
pushup(i);
}
void update(int l, int r, ull val, int op, int i) {
if(l<=tr[i].l && tr[i].r<=r) {
if(op==2) {
tr[i].val += val*tr[i].length();
tr[i].add += val;
} else {
tr[i].val *= val;
tr[i].mul *= val;
tr[i].add *= val;
}
return;
}
int mid = tr[i].l+tr[i].r>>1;
pushdown(i);
if(l<=mid) update(l, r, val, op, i<<1);
if(r>mid) update(l, r, val, op, i<<1|1);
pushup(i);
}
ull query(int l, int r, int i) {
if(l<=tr[i].l && tr[i].r<=r) return tr[i].val;
int mid=tr[i].l+tr[i].r>>1;
ull res=0;
pushdown(i);
if(l<=mid) res += query(l, r, i<<1);
if(r>mid) res += query(l, r, i<<1|1);
return res;
}
}st;
void update(int u, int v, ull val, int op) {
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) swap(u, v);
st.update(dfn[top[u]], dfn[u], val, op, 1);
u = fa[top[u]];
}
if(dep[u] > dep[v]) swap(u, v);
st.update(dfn[u], dfn[v], val, op, 1);
}
ull query(int u, int v) {
ull res = 0;
while(top[u] != top[v]) {
if(dep[top[u]] < dep[top[v]]) swap(u, v);
res += st.query(dfn[top[u]], dfn[u], 1);
u = fa[top[u]];
}
if(dep[u] > dep[v]) swap(u, v);
res += st.query(dfn[u], dfn[v], 1);
return res;
}
int main() {
// freopen("input.in", "r", stdin);
while(~scanf("%d", &n)) {
tot = 0;
for (int i=1; i<=n; ++i) g[i].clear();
for (int x, i=2; i<=n; ++i) {
read(x);
g[x].push_back(i);
}
st.build(1, n, 1);
dfs1(1, 0);
dfs2(1, 1);
// for (int i=1; i<=n; ++i) printf("%d ", top[i]); puts("");
// for (int i=1; i<=n; ++i) printf("%d ", dep[i]); puts("");
scanf("%d", &m);
for (int op, u, v, i=1; i<=m; ++i) {
read(op); read(u); read(v);
// scanf("%d%d%d", &op, &u, &v);
if(op==1 || op==2) {
ull x;
scanf("%llu", &x);
update(u, v, x, op);
} else if(op==3) {
update(u, v, 1, 2);
update(u, v, -1, 1);
} else {
ull ans = query(u, v);
printf("%llu\n", ans);
}
}
}
return 0;
}
原文地址:https://www.cnblogs.com/acerkoo/p/11295766.html
时间: 2024-10-31 01:03:58