题意
设 $$f_i = \left\{\begin{matrix}
1 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i < k\\
\prod_{j=1}^k f_{i-j}^{b_j} \ mod \ p, \ \ \ \ \ i > k
\end{matrix}\right.$$
求 $f_k$($1 \leq f_k < p$),使得 $f_m = n$.($1 \leq k\leq 100$)
分析
$f_n$ 可以表示成 ${f_k}^x$ 的形式,也就是指数的线性递推式,用矩阵快速幂求出最终 $f_n$ 中的次数就行了。
$$\begin{bmatrix} f_k\\ f_{k-1}\\ \vdots \\ f_1 \end{bmatrix} =
\begin{bmatrix} b_1 & b_2 & \cdots & b_k\\ 1 & 0 & 0 & 0\\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot
\begin{bmatrix} f_{k-1}\\ f_{k-2}\\ \vdots \\ f_0 \end{bmatrix}$$
即 $F_n = B\cdot F_{n-1} = B^{n-k}F_k$
那么就是 ${f_k}^x \equiv f_n \ (mod p) $ 形式了,其中 $x$ 是已经用矩阵快速幂算出来的。
于是就是关于形如 $x^a\equiv b\pmod{p}$ 方程的求解,直接用模板。
其中998244353的原根为3,算常识了吧。
注意算矩阵快速幂时,模并不是 $p$,由欧拉定理,模是 $p-1$.
#include<bits/stdc++.h> using namespace std; typedef long long ll; struct matrix { int r, c; ll mat[101][101]; matrix(){ memset(mat, 0, sizeof(mat)); } }; const ll p = 998244353; int k, b[110], n, m; matrix mul(matrix A, matrix B, ll p) //矩阵相乘 { matrix ret; ret.r = A.r; ret.c = B.c; for(int i = 0;i < A.r;i++) for(int k = 0;k < A.c;k++) for(int j = 0;j < B.c;j++) { ret.mat[i][j] = (ret.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % p; } return ret; } matrix mpow(matrix A, int n, int p) { matrix ret; ret.r = A.r; ret.c = A.c; for(int i = 0;i < ret.r;i++) ret.mat[i][i] = 1; while(n) { if(n & 1) ret = mul(ret, A, p); A = mul(A, A, p); n >>= 1; } return ret; } ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll qpow(ll a, ll b, ll p) { a = a % p; ll ret = 1; while(b) { if(b&1) ret = ret * a % p; a = a * a %p; b >>= 1; } return ret % p; } map<int,int>mp; int bsgs(int a, int b, int p){ //a^x = b (mod P),(a,p)=1,返回x,x>=1 int m=sqrt(p)+1;mp.clear(); for(register int i=0,res=b;i<m;++i,res=1ll*res*a%p)mp[res]=i; for(register int i=1,tmp=qpow(a,m,p),res=tmp;i<=m+1;++i,res=1ll*res*tmp%p) if(mp.count(res))return i*m-mp[res]; return -1; } int main() { scanf("%d", &k); for(int i = 1;i <= k;i++) scanf("%d", &b[i]); scanf("%d%d", &n, &m); matrix B; B.r = B.c = k; for(int i = 0;i < k;i++) B.mat[0][i] = b[i+1]; for(int i = 1;i < k;i++) B.mat[i][i-1] = 1; B = mpow(B, n-k, p-1); int a = B.mat[0][0] % (p-1); //注意,是模p-1 而非p int c = bsgs(qpow(3, a, p), m, p); if(c == -1) printf("-1\n"); else { int fk = qpow(3, c, p); printf("%d\n", fk); } }
参考链接:https://www.cnblogs.com/bztMinamoto/p/10348641.html
原文地址:https://www.cnblogs.com/lfri/p/11511210.html