【机器学习】逻辑回归原理介绍

【机器学习】逻辑回归原理介绍的相关文章

机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)

在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在来看一下多分类的情况. 现实中相对于二分类问题,我们更常遇到的是多分类问题.多分类问题如何求解呢?有两种方式.一种是方式是修改原有模型,另一种方式是将多分类问题拆分成一个个二分类问题解决. 先来看一下第一种方式:修改原有模型.即:把二分类逻辑回归模型变为多分类逻辑回归模型. (二分类逻辑回归称为binary

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

【机器学习】多项式回归原理介绍

[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 在上一节中我们介绍了线性回归的原理,然后分别用python和sklearn实现了不同变量个数的线性回归的几个例子.线性回归模型形式简单,有很好的可解释性,但是它只适用于X和y之间存在线性关系的数据集.对于非线性关系的数据集,线性回归不能很好的工作.因此本文介绍线性回归模型的扩展——「多项式回归」,我们可以用它来拟合非线性关系的数据集. 假设我们有一个单变量数据集,如下图. 为了观察它

机器学习—逻辑回归理论简介

下面是转载的内容,主要是介绍逻辑回归的理论知识,先总结一下自己看完的心得 简单来说线性回归就是直接将特征值和其对应的概率进行相乘得到一个结果,逻辑回归则是这样的结果上加上一个逻辑函数 这里选用的就是Sigmoid函数,在坐标尺度很大的情况下类似于阶跃函数 在确认特征对应的权重值也就是回归系数的时候 最常用的方法是最大似然法,EM参数估计,这个是在一阶导数能够有解的前提下 如果一阶导数无法求得解析值,那么一般选取梯度上升法,通过有限次的迭代过程,结合代价函数更新回归系数至收敛 //////////

Python逻辑回归原理及实际案例应用

前言 上面我们介绍了线性回归, 岭回归, Lasso回归, 今天我们来看看另外一种模型-"逻辑回归". 虽然它有"回归"一词, 但解决的却是分类问题 目录 1. 逻辑回归 2. 优缺点及优化问题 3. 实际案例应用 4. 总结 正文 在前面所介绍的线性回归, 岭回归和Lasso回归这三种回归模型中, 其输出变量均为连续型, 比如常见的线性回归模型为: 其写成矩阵形式为: 现在这里的输出为连续型变量, 但是实际中会有"输出为离散型变量"这样的需求,

[机器学习]--逻辑回归总结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有“回归”两个字,却不是一个回归算法.那为什么有“回归”这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子.邮件是否是垃圾邮件.细胞是否是癌细胞. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数θθ,满足Y=XθY=Xθ.此时我们的Y是连续的,所以是回归模型.如果我们想要Y是离散的话,怎么办呢?一个可以想到的办法是,我们对于这个

机器学习-逻辑回归

(整理的简单,公式也没使用公式编辑器.) 对于数据集D={(x1,y1),(x2,y2),...,{xn,yn}} ,而xi= {xi1,xi2,...,xim} 代表m维 . 在线性回归中,我们想学习一个线性的函数 f(x) = w1*x1+w2*x2+w3*x3+...+wm*xm+b . 向量形式 f(X) = Wt*X +b  其中Wt 是W 向量的转置.其可能值范围是(-oo,+oo). 对于二分类任务,其类别标记为y={0,1},  需要将范围取到(0,1),就使用sigmoid函数

机器学习-逻辑回归与线性回归

logistic回归与线性回归实际上有很多相同之处,最大的区别就在于他们的因变量不同,其他的基本都差不多,正是因为如此,这两种回归可以归于同一个家族,即广义线性模型(generalized linear model).这一家族中的模型形式基本上都差不多,不同的就是因变量不同,如果是连续的,就是多重线性回归,如果是二项分布,就是logistic回归.logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释.所以实际中最为常用的就是二分类的logistic回

机器学习逻辑回归算法推导

1.引自https://www.cnblogs.com/bnuvincent/p/9695666.html 2. 基本原理 Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程: (1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果.这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的