谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。
一、谱聚类概述
谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用。它的主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到聚类的目的。
乍一看,这个算法原理的确简单,但是要完全理解这个算法的话,需要对图论中的无向图,线性代数和矩阵分析都有一定的了解。下面我们就从这些需要的基础知识开始,一步步学习谱聚类。
二、谱聚类基础之一:无向权重图
由于谱聚类是基于图论的,因此我们首先温习下图的概念。对于一个图\(G\),我们一般用点的集合\(V\)和边的集合\(E\)来描述。即为\(G(V,E)\)。其中\(V\)即为我们数据集里面所有的点\((v_1, v_2,...v_n)\)。对于\(V\)中的任意两个点,可以有边连接,也可以没有边连接。我们定义权重\(w_{ij}\)为点\(v_i\)和点\(v_j\)之间的权重。由于我们是无向图,所以\(w_{ij} = w_{ji}\)。
对于有边连接的两个点\(v_i\)和\(v_j\),\(w_{ij} >; 0\),对于没有边连接的两个点\(v_i\)和\(v_j\),\(w_{ij}?= 0\)。对于图中的任意一个点\(v_i\),它的度\(d_i\)定义为和它相连的所有边的权重之和,即
\[
d_i = \sum\limits_{j=1}^{n}w_{ij}
\]
利用每个点度的定义,我们可以得到一个nxn的度矩阵\(D\),它是一个对角矩阵,只有主对角线有值,对应第i行的第i个点的度数,定义如下:
\[
\mathbf{D} =
\left( \begin{array}{ccc}
d_1?& \ldots & \ldots \\ldots?&?d_2 & \ldots \\ ?
\vdots & \vdots & \ddots \\??
\ldots & \ldots & d_n \end{array} \right)
\]
利用所有点之间的权重值,我们可以得到图的邻接矩阵\(W\),它也是一个nxn的矩阵,第i行的第j个值对应我们的权重\(w_{ij}\)。
除此之外,对于点集\(V\)的的一个子集\(A \subset V\),我们定义:
\[
|A|: = 子集A中点的个数
\]
\[
vol(A): = \sum\limits_{i \in A}d_i
\]
三、谱聚类基础之二:相似矩阵
在上一节我们讲到了邻接矩阵\(W\),它是由任意两点之间的权重值\(w_{ij}\)组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?
基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说,我们可以通过样本点距离度量的相似矩阵\(S\)来获得邻接矩阵\(W\)。
构建邻接矩阵\(W\)的方法有三类。\(\epsilon\)-邻近法,K邻近法和全连接法。
对于\(\epsilon\)-邻近法,它设置了一个距离阈值\(\epsilon\),然后用欧式距离\(s_{ij}\)度量任意两点\(x_i\)和\(x_j\)的距离。即相似矩阵的\(s_{ij} = |x_i-x_j|_2^2\),??然后根据\(s_{ij}\)和\(\epsilon\)的大小关系,来定义邻接矩阵\(W\)如下:
\[
w_{ij}=
\begin{cases}
0& {s_{ij} >; \epsilon}\\epsilon& {{s_{ij}?\leq \epsilon}}
\end{cases}
\]
从上式可见,两点间的权重要不就是\(\epsilon\),要不就是0,没有其他的信息了。距离远近度量很不精确,因此在实际应用中,我们很少使用\(\epsilon\)-邻近法。
第二种定义邻接矩阵\(W\)的方法是K邻近法,利用KNN算法遍历所有的样本点,取每个样本最近的k个点作为近邻,只有和样本距离最近的k个点之间的\(w_{ij} >; 0\)。但是这种方法会造成重构之后的邻接矩阵W非对称,我们后面的算法需要对称邻接矩阵。为了解决这种问题,一般采取下面两种方法之一:
第一种K邻近法是只要一个点在另一个点的K近邻中,则保留\(s_{ij}\)
\[
w_{ij}=w_{ji}=
\begin{cases}
0& {x_i \notin KNN(x_j) \;and \;x_j \notin KNN(x_i)}\exp(-\frac{|x_i-x_j|_2^2}{2\sigma^2})& {x_i \in KNN(x_j)\; or\; x_j \in KNN(x_i})
\end{cases}
\]
第二种K邻近法是必须两个点互为K近邻中,才能保留\(s_{ij}\)
\[
w_{ij}=w_{ji}=
\begin{cases}
0& {x_i \notin KNN(x_j) \;or\;x_j \notin KNN(x_i)}\exp(-\frac{|x_i-x_j|_2^2}{2\sigma^2})& {x_i \in KNN(x_j)\; and \; x_j \in KNN(x_i})
\end{cases}
\]
第三种定义邻接矩阵\(W\)的方法是全连接法,相比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。最常用的是高斯核函数RBF,此时相似矩阵和邻接矩阵相同:
\[
w_{ij}=s_{ij}=exp(-\frac{|x_i-x_j|_2^2}{2\sigma^2})
\]
在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。
四、谱聚类基础之三:拉普拉斯矩阵
单独把拉普拉斯矩阵(Graph Laplacians)拿出来介绍是因为后面的算法和这个矩阵的性质息息相关。它的定义很简单,拉普拉斯矩阵\(L= D-W\)。\(D\)即为我们第二节讲的度矩阵,它是一个对角矩阵。而\(W\)即为我们第二节讲的邻接矩阵,它可以由我们第三节的方法构建出。
拉普拉斯矩阵有一些很好的性质如下:
1)拉普拉斯矩阵是对称矩阵,这可以由\(D\)和\(W\)都是对称矩阵而得。
2)由于拉普拉斯矩阵是对称矩阵,则它的所有的特征值都是实数。
3)对于任意的向量\(f\),我们有
\[
f^TLf = \frac{1}{2}\sum\limits_{i,j=1}^{n}w_{ij}(f_i-f_j)^2
\]
这个利用拉普拉斯矩阵的定义很容易得到如下:
\[
f^TLf = f^TDf - f^TWf = \sum\limits_{i=1}^{n}d_if_i^2 - \sum\limits_{i,j=1}^{n}w_{ij}f_if_j
\]
\[
=\frac{1}{2}(?\sum\limits_{i=1}^{n}d_if_i^2 - 2?\sum\limits_{i,j=1}^{n}w_{ij}f_if_j + \sum\limits_{j=1}^{n}d_jf_j^2) = \frac{1}{2}\sum\limits_{i,j=1}^{n}w_{ij}(f_i-f_j)^2?
\]
4) 拉普拉斯矩阵是半正定的,且对应的n个实数特征值都大于等于0,即\(0 =\lambda_1 \leq \lambda_2 \leq...?\leq \lambda_n\), 且最小的特征值为0,这个由性质3很容易得出。
五、谱聚类基础之四:无向图切图
对于无向图\(G\)的切图,我们的目标是将图\(G(V,E)\)切成相互没有连接的k个子图,每个子图点的集合为:\(A_1,A_2,..A_k\),它们满足\(A_i \cap A_j = \emptyset\),且\(A_1 \cup A_2 \cup ... \cup A_k = V\).
对于任意两个子图点的集合\(A, B \subset V\), \(A \cap B = ?\emptyset\), 我们定义A和B之间的切图权重为:
\[
W(A, B) = \sum\limits_{i \in A, j \in B}w_{ij}
\]
那么对于我们k个子图点的集合:\(A_1,A_2,..A_k\),我们定义切图cut为:
\[
cut(A_1,A_2,...A_k) = \frac{1}{2}\sum\limits_{i=1}^{k}W(A_i, \overline{A}_i?)
\]
? 其中\(\overline{A}_i?\)为\(A_i\)的补集,意为除\(A_i\)子集外其他V的子集的并集。
那么如何切图可以让子图内的点权重和高,子图间的点权重和低呢?一个自然的想法就是最小化\(cut(A_1,A_2,...A_k)\), 但是可以发现,这种极小化的切图存在问题,如下图:
我们选择一个权重最小的边缘的点,比如C和H之间进行cut,这样可以最小化\(cut(A_1,A_2,...A_k)\), 但是却不是最优的切图,如何避免这种切图,并且找到类似图中"Best Cut"这样的最优切图呢?我们下一节就来看看谱聚类使用的切图方法。
六、谱聚类之切图聚类
为了避免最小切图导致的切图效果不佳,我们需要对每个子图的规模做出限定,一般来说,有两种切图方式,第一种是RatioCut,第二种是Ncut。下面我们分别加以介绍。
6.1 RatioCut切图
RatioCut切图为了避免第五节的最小切图,对每个切图,不光考虑最小化\(cut(A_1,A_2,...A_k)\),它还同时考虑最大化每个子图点的个数,即:
\[
RatioCut(A_1,A_2,...A_k) = \frac{1}{2}\sum\limits_{i=1}^{k}\frac{W(A_i, \overline{A}_i?)}{|A_i|}
\]
那么怎么最小化这个RatioCut函数呢?牛人们发现,RatioCut函数可以通过如下方式表示。
我们引入指示向量\(h_j \in \{h_1, h_2,..h_k\}\; j =1,2,...k\),对于任意一个向量\(h_j\), 它是一个n维向量(n为样本数),我们定义\(h_{ij}\)为:
\[
h_{ij}=
\begin{cases}
0& {?v_i \notin A_j}\\frac{1}{\sqrt{|A_j|}}& {?v_i \in A_j}
\end{cases}
\]
那么我们对于\(h_i^TLh_i\),有:
\[
\begin{align} h_i^TLh_i & =?\frac{1}{2}\sum\limits_{m=1}\sum\limits_{n=1}w_{mn}(h_{im}-h_{in})^2 \\& =\frac{1}{2}(\sum\limits_{m \in A_i, n \notin A_i}w_{mn}(\frac{1}{\sqrt{|A_i|}} - 0)^2 + ?\sum\limits_{m \notin A_i, n \in A_i}w_{mn}(0 - \frac{1}{\sqrt{|A_i|}} )^2\\& = \frac{1}{2}(\sum\limits_{m \in A_i, n \notin A_i}w_{mn}\frac{1}{|A_i|} + ?\sum\limits_{m \notin A_i, n \in A_i}w_{mn}\frac{1}{|A_i|}\\& = \frac{1}{2}(cut(A_i, \overline{A}_i) \frac{1}{|A_i|} + cut(\overline{A}_i, A_i) \frac{1}{|A_i|}) \\& = ?\frac{cut(A_i, \overline{A}_i)}{|A_i|} \end{align}
\]
上述第(1)式用了上面第四节的拉普拉斯矩阵的性质3. 第二式用到了指示向量的定义。可以看出,对于某一个子图i,它的RatioCut对应于\(h_i^TLh_i\),那么我们的k个子图呢?对应的RatioCut函数表达式为:
\[
RatioCut(A_1,A_2,...A_k) = \sum\limits_{i=1}^{k}h_i^TLh_i = \sum\limits_{i=1}^{k}(H^TLH)_{ii} = tr(H^TLH)
\]
其中\(tr(H^TLH)\)为矩阵的迹。也就是说,我们的RatioCut切图,实际上就是最小化我们的\(tr(H^TLH)\)。注意到\(H^TH=I\),则我们的切图优化目标为:
\[
\underbrace{arg\;min}_H\; tr(H^TLH) \;\; s.t.\;H^TH=I
\]
注意到我们H矩阵里面的每一个指示向量都是n维的,向量中每个变量的取值为0或者\(\frac{1}{\sqrt{|A_j|}}\),就有\(2^n\)种取值,有k个子图的话就有k个指示向量,共有\(k2^n\)种H,因此找到满足上面优化目标的H是一个NP难的问题。那么是不是就没有办法了呢?
注意观察\(tr(H^TLH)\)中每一个优化子目标\(h_i^TLh_i\),其中\(h\)是单位正交基, L为对称矩阵,此时\(h_i^TLh_i\)的最大值为L的最大特征值,最小值是L的最小特征值。如果你对主成分分析PCA很熟悉的话,这里很好理解。在PCA中,我们的目标是找到协方差矩阵(对应此处的拉普拉斯矩阵L)的最大的特征值,而在我们的谱聚类中,我们的目标是找到目标的最小的特征值,得到对应的特征向量,此时对应二分切图效果最佳。也就是说,我们这里要用到维度规约的思想来近似去解决这个NP难的问题。
对于\(h_i^TLh_i\),我们的目标是找到最小的L的特征值,而对于\(tr(H^TLH) = \sum\limits_{i=1}^{k}h_i^TLh_i\),则我们的目标就是找到k个最小的特征值,一般来说,k远远小于n,也就是说,此时我们进行了维度规约,将维度从n降到了k,从而近似可以解决这个NP难的问题。
通过找到L的最小的k个特征值,可以得到对应的k个特征向量,这k个特征向量组成一个nxk维度的矩阵,即为我们的H。一般需要对H矩阵按行做标准化,即
\[
h_{ij}^{*}= \frac{h_{ij}}{(\sum\limits_{t=1}^kh_{it}^{2})^{1/2}}
\]
由于我们在使用维度规约的时候损失了少量信息,导致得到的优化后的指示向量h对应的H现在不能完全指示各样本的归属,因此一般在得到nxk维度的矩阵H后还需要对每一行进行一次传统的聚类,比如使用K-Means聚类.
6.2 Ncut切图
Ncut切图和RatioCut切图很类似,但是把Ratiocut的分母\(|Ai|\)换成\(vol(A_i)\). 由于子图样本的个数多并不一定权重就大,我们切图时基于权重也更合我们的目标,因此一般来说Ncut切图优于RatioCut切图。
\[
NCut(A_1,A_2,...A_k) = \frac{1}{2}\sum\limits_{i=1}^{k}\frac{W(A_i, \overline{A}_i?)}{vol(A_i)}
\]
,对应的,Ncut切图对指示向量\(h\)做了改进。注意到RatioCut切图的指示向量使用的是\(\frac{1}{\sqrt{|A_j|}}\)标示样本归属,而Ncut切图使用了子图权重\(\frac{1}{\sqrt{vol(A_j)}}\)来标示指示向量h,定义如下:
\[
h_{ij}=
\begin{cases}
0& {?v_i \notin A_j}\\frac{1}{\sqrt{vol(A_j)}}& {?v_i \in A_j}
\end{cases}
\]
那么我们对于\(h_i^TLh_i\),有:
\[
\begin{align} h_i^TLh_i & =?\frac{1}{2}\sum\limits_{m=1}\sum\limits_{n=1}w_{mn}(h_{im}-h_{in})^2 \\& =\frac{1}{2}(\sum\limits_{m \in A_i, n \notin A_i}w_{mn}(\frac{1}{\sqrt{vol(A_i)}} - 0)^2 + ?\sum\limits_{m \notin A_i, n \in A_i}w_{mn}(0 - \frac{1}{\sqrt{vol(A_i)}} )^2\\& = \frac{1}{2}(\sum\limits_{m \in A_i, n \notin A_i}w_{mn}\frac{1}{vol(A_i)} + ?\sum\limits_{m \notin A_i, n \in A_i}w_{mn}\frac{1}{vol(A_i)}\\& = \frac{1}{2}(cut(A_i, \overline{A}_i) \frac{1}{vol(A_i)} + cut(\overline{A}_i, A_i) \frac{1}{vol(A_i)}) \\& = ?\frac{cut(A_i, \overline{A}_i)}{vol(A_i)} \end{align}
\]
推导方式和RatioCut完全一致。也就是说,我们的优化目标仍然是
\[
NCut(A_1,A_2,...A_k) = \sum\limits_{i=1}^{k}h_i^TLh_i = \sum\limits_{i=1}^{k}(H^TLH)_{ii} = tr(H^TLH)
\]
但是此时我们的\(H^TH \neq I\),而是\(H^TDH = I\)。推导如下:
\[
?h_i^TDh_i = \sum\limits_{j=1}^{n}h_{ij}^2d_j =\frac{1}{vol(A_i)}\sum\limits_{j \in A_i}d_j= \frac{1}{vol(A_i)}vol(A_i) =1
\]
也就是说,此时我们的优化目标最终为:
\[
\underbrace{arg\;min}_H\; tr(H^TLH) \;\; s.t.\;H^TDH=I
\]
此时我们的H中的指示向量\(h\)并不是标准正交基,所以在RatioCut里面的降维思想不能直接用。怎么办呢?其实只需要将指示向量矩阵H做一个小小的转化即可。
我们令\(H = D^{-1/2}F\), 则:\(H^TLH = F^TD^{-1/2}LD^{-1/2}F\),\(H^TDH=F^TF = I\),也就是说优化目标变成了:
\[
\underbrace{arg\;min}_F\; tr(F^TD^{-1/2}LD^{-1/2}F) \;\; s.t.\;F^TF=I
\]
可以发现这个式子和RatioCut基本一致,只是中间的L变成了\(D^{-1/2}LD^{-1/2}\)。这样我们就可以继续按照RatioCut的思想,求出\(D^{-1/2}LD^{-1/2}\)的最小的前k个特征值,然后求出对应的特征向量,并标准化,得到最后的特征矩阵\(F\),最后对\(F\)进行一次传统的聚类(比如K-Means)即可。
一般来说, \(D^{-1/2}LD^{-1/2}\)相当于对拉普拉斯矩阵\(L\)做了一次标准化,即\(\frac{L_{ij}}{\sqrt{d_i*d_j}}\)
七、谱聚类算法流程
铺垫了这么久,终于可以总结下谱聚类的基本流程了。一般来说,谱聚类主要的注意点为相似矩阵的生成方式(参见第二节),切图的方式(参见第六节)以及最后的聚类方法(参见第六节)。
最常用的相似矩阵的生成方式是基于高斯核距离的全连接方式,最常用的切图方式是Ncut。而到最后常用的聚类方法为K-Means。下面以Ncut总结谱聚类算法流程。
输入:样本集D=\((x_1,x_2,...,x_n)\),相似矩阵的生成方式, 降维后的维度\(k_1\), 聚类方法,聚类后的维度\(k_2\)
输出: 簇划分\(C(c_1,c_2,...c_{k_2})\).
1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S
2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D
3)计算出拉普拉斯矩阵L
4)构建标准化后的拉普拉斯矩阵\(D^{-1/2}LD^{-1/2}\)
5)计算\(D^{-1/2}LD^{-1/2}\)最小的\(k_1\)个特征值所各自对应的特征向量\(f\)
6) 将各自对应的特征向量\(f\)组成的矩阵按行标准化,最终组成\(n?\times k_1\)维的特征矩阵F
7)对F中的每一行作为一个\(k_1\)维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为\(k_2\)。
8)得到簇划分\(C(c_1,c_2,...c_{k_2})\).
八、谱聚类算法总结
谱聚类算法是一个使用起来简单,但是讲清楚却不是那么容易的算法,它需要你有一定的数学基础。如果你掌握了谱聚类,相信你会对矩阵分析,图论有更深入的理解。同时对降维里的主成分分析也会加深理解。
下面总结下谱聚类算法的优缺点。
谱聚类算法的主要优点有:
1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到
2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好。
谱聚类算法的主要缺点有:
1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。
2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。
?
(欢迎转载,转载请注明出处。欢迎沟通交流: 微信:nickchen121)?
原文地址:https://www.cnblogs.com/nickchen121/p/11214909.html