Sigma_k Equation

\section{Elementary inequalities for $\sigma_k$ function (Lecture given by Xinan Ma)}
The elementary symmetric functions appear naturally in the geometric quantities. In order to carry on analysis, we need to understand properties of the elementary symmetric functions.

For $1\leq k\leq n$, and $\lambda=(\lambda_1,\lambda_2,...,\lambda_2)\in \mathbb{R}^n$, the $k$-th elementary symmetric function is
defined as
\begin{equation}
\sigma_k(\lambda)=\sum\limits_{1\leq i_1<i_2<...<i_k\leq n}\lambda_{i_1}\lambda_{i_2}...\lambda_{i_k}.\nonumber
\end{equation}
where the sum is taken over all strictly increasing sequences $i_1,...,i_k$ of the indices from
the set $\{1,2,...,n\}$. The definition can be extended to symmetric matrices
Denote $\lambda(W)=(\lambda_1(W),...,\lambda_n(W))$ to be the eigenvalues of the symmetric matrix $W$, set
$\sigma_k(W)=\sigma_k(\lambda(W))$.
It is convenient to set
\begin{equation}
\sigma_0(W) = 1,\ \ \ \sigma_k(W)=0\ \ \ for\ \ \ k > n.
\end{equation}
It follows directly from the definition that, for any $n\times n$ symmetric matrix $W$, and
$t\in \mathbb{R}$,
\begin{equation}
\sigma_n(I+tW)=\det(I_n+tW)=\sum\limits_{i=1}^n\sigma_i(W)t^i.
\end{equation}
Conversely, (2.2) can also be used to define $\sigma_k(W)$, $\forall\ \ k=0,...,n.$\\

An important property of $\sigma_k$ is the divergent free structure.

We say a function $u\in C^2(\Omega)\cap C^0(\overline{\Omega})$ is
$k$-admissible if
\begin{equation}
\lambda(D^2u)\in \overline{\Gamma}_k,
\end{equation}

where $\Gamma_k$ is an open symmetric convex cone in $\mathbb{R}^n$, with vertex at the origin,
given by
\begin{equation}
\Gamma_k=\{(\lambda_1,\lambda_2,...,\lambda_n)\in\mathbb{R}^n\mid \sigma_j(\lambda)>0, \ \ \forall \ j=1,2,...,k \}
\end{equation}

Clearly $\sigma_k(\lambda)=0$ for $\lambda\in\partial\Gamma_k$,
\begin{equation}
\Gamma_n\subset\Gamma_{n-1}\subset...\subset\Gamma_1\nonumber
\end{equation}
$\Gamma_n$ is the positive cone,

$$\Gamma_n=\{(\lambda_1,\lambda_2,...,\lambda_n)\in\mathbb{R}^n\mid \lambda_1>0,\ \lambda_2>0,...,\ \lambda_n>0\}\nonumber
$$
and $\Gamma_1$ is the half space $\{\lambda\in\mathbb{R}^n\mid \sum\limits_{j=1}^n\lambda_{j}>0\}$. A function is $1$-admissible if
and only if it is sub-harmonic, and an $n$-admissible function must be convex.
For any $2\leq k\leq n$, a $k$-admissible function is sub-harmonic, and the set of
all $k-$ admissible functions is a convex cone in $C^2(\Omega)$.\\

The cone $\Gamma_k$ may also be equivalently defined as the component $\{\lambda\in\mathbb{R}^n\mid \sigma_k(\lambda)>0\}$
containing the vector $(1,1,...,1)$, or characterized as
$\Gamma_k=\{\lambda\in\mathbb{R}^n\mid 0<\sigma_k(\lambda)\leq\sigma_k(\lambda+\eta),\ \forall\ \eta_i\geq0\ \ i=1,2,...,n\}.$\\

Let
$$
\sigma_k(\lambda)=\sum\limits_{1\leq i_1<i_2<...<i_k\leq n}\lambda_{i_1}\lambda_{i_2}...\lambda_{i_k}.\nonumber
$$
For example, $\sigma_1(\lambda)=\sum\limits_{i=1}^{n}\lambda_i$ and $\sigma_n(\lambda)=\prod\limits_{i=1}^{n}\lambda_i$. Especially, if $n=3$ and $k=2$, we have $\sigma_2(\lambda)=\lambda_1\lambda_2+\lambda_2\lambda_3+\lambda_3\lambda_1$.\\

We collect some inequalities related to the polynomial $\sigma_k(\lambda)$,
which are needed in our investigation of the $k-$Hessian equation. Denote $\sigma_0=1$ and $\sigma_k=0$ for $k>n$.\\

(1)$\sigma_{k+1}(\lambda)=\sigma_{k+1}(\lambda| i)+\lambda_i\sigma_{k}(\lambda|i)$, where $(\lambda| i)=(\lambda_1,...,\hat{\lambda}_i,...,\lambda_n)$, delete $\lambda_i$;\\
(2)$\sum\limits_{i=1}^n\lambda_i\sigma_k(\lambda| i)=(k+1)\sigma_{k+1}(\lambda)$;\\
(3)$\sum\limits_{i=1}^n\sigma_k(\lambda|i)=(n-k)\sigma_k(\lambda)$;\\
(4)$\frac{\partial\sigma_{k+1}(\lambda)}{\partial\lambda_i}=\sigma_k(\lambda| i)$;\\
(5)$\sum\limits_{i=1}^n\lambda_i^2\sigma_k(\lambda| i)=\sum\limits_{i=1}^n\lambda_i(\sigma_{k+1}(\lambda)-\sigma_{k+1}(\lambda| i))=\sigma_1(\lambda)\cdot\sigma_{k+1}(\lambda)-(k+2)\sigma_{k+2}(\lambda)$.

The above five inequalities follows easily from fundamental algebraic identity.

(Newton‘s inequality) $\forall\ k\geq1$,
$$
(n-k+1)(k+1)\sigma_{k+1}(\lambda)\cdot\sigma_{k-1}(\lambda)\leq k(n-k)^2\sigma_k^2(\lambda),
$$
that exactly is
$$
\frac{\sigma_{k+1}(\lambda)}{C_n^{k+1}}\cdot\frac{\sigma_{k-1}(\lambda)}{C_n^{k-1}}\leq \Big(\frac{\sigma_{k}(\lambda)}{C_n^{k}}\Big)^2.\nonumber
$$

See reference book: Hardy Littlewood Ploya [Inequalities], D.S.MitrinoviC [Analytic Inequalities].\\

Garding‘s inequality(1958)[See CNS III]:\\
Assume that $\lambda\in\Gamma_k$,\ $\mu\in\Gamma_k$, then
$$
\frac{1}{k}\sum\limits_{i=1}^{n}\mu_i\sigma_{k-1}(\lambda| i)\geq\left(\sigma_k(\mu)\right)^{\frac{1}{k}}\cdot\left(\sigma_k(\lambda)\right)^{1-\frac{1}{k}}
$$
Some corollary: For $\lambda\in\Gamma_k$,\ $\sigma_k^{\frac{1}{k}}(\lambda)$ is concave w.r.t. $\lambda$.\\

We only need to show that for any $\lambda\in\Gamma_k$,\ $\mu\in\Gamma_k$,
$$
\sigma^{\frac{1}{k}}_{k}(\mu)\leq\sigma^{\frac{1}{k}}_{k}(\lambda)+\frac{1}{k}\sigma^{\frac{1}{k}-1}_{k}(\lambda)\sigma_{k-1}(\lambda| i)(\mu_i-\lambda_i).
$$
By Lemma1.1(2), we have $\frac{1}{k}\sigma^{\frac{1}{k}-1}_{k}(\lambda)\sigma_{k-1}\lambda_i=\sigma^{\frac{1}{k}}_{k}(\lambda)$. It follows that the above inequality is equivalent to
$$
\sigma^{\frac{1}{k}}_{k}(\mu)\leq\frac{1}{k}\sigma^{\frac{1}{k}-1}_{k}(\lambda)\sigma_{k-1}(\lambda| i)\mu_i.
$$
This is the Garding‘s inequality. We are done!

The following three statements are equivalent:\\
(1)$\Gamma_k=\{(\lambda_1,\lambda_2,...,\lambda_n)\in\mathbb{R}^n\mid \sigma_j(\lambda)>0, \ \ \forall \ j=1,2,...,k \}$;\\
(2)$\Gamma_k=\{\lambda\in\mathbb{R}^n\mid 0<\sigma_k(\lambda)\leq\sigma_k(\lambda+\eta),\ \forall\ \eta=(\eta_1,...,\eta_n),\ \eta_i\geq0\ \ \mbox{for}\ \ i=1,2,...,n\}$;\\
(3)$\Gamma_k$ is defined as the component $\{\lambda\in\mathbb{R}^n\mid \sigma_k(\lambda)>0\}$
containing the vector $(1,1,...,1)$ or $\Gamma_n$.

(Ellipticity):\\
$\forall \lambda\in\Gamma_k$, $\forall\ h\in\{1,2,...,k-1\}$, we have $\sigma_{h}(\lambda|i)>0$,\ $\forall\ i=1,2,...,n$. \\
It follows that
$\frac{\partial\sigma_{k}(\lambda)}{\partial\lambda_i}=\sigma_{k-1}(\lambda| i)>0$, which indicates the ellipticity of the $\sigma_k$ equation.

Lemma 1.4 can be proved by induction for $h$.

(Newton-Maclaurin‘s inequality)\\
$\forall\ k\geq1$, $\forall$ $\lambda\in\Gamma_k$,
$
\left(\frac{\sigma_{k}(\lambda)}{C_n^{k}}\right)^{\frac{1}{k}}\leq \left(\frac{\sigma_{k}(\lambda)}{C_n^{l}}\right)^{\frac{1}{l}},\ \ k>l.\nonumber
$
We only need to show
$
\left(\frac{\sigma_{l}(\lambda)}{C_n^{l}}\right)^{\frac{1}{l}}\leq \left(\frac{\sigma_{l-1}(\lambda)}{C_n^{l-1}}\right)^{\frac{1}{l-1}},\ \ k\geq l\geq1.\nonumber
$
This can be proved by induction for $l$.

(Generalized Newton-Maclaurin‘s inequality)
$\forall$ $\lambda\in\Gamma_k$, $\forall\ k>1\geq0,\ r>s\geq0,\ k\geq r,\ l\geq s$, then
$
\left(\frac{\frac{\sigma_{k}(\lambda)}{C_n^{k}}}{\frac{\sigma_{l}(\lambda)}{C_n^{l}}}\right)^{\frac{1}{k-l}}\leq \left(\frac{\frac{\sigma_{r}(\lambda)}{C_n^{r}}}{\frac{\sigma_{s}(\lambda)}{C_n^{s}}}\right)^{\frac{1}{r-s}},\nonumber
$
with $"="$ holds iff $\lambda_1=...=\lambda_n$.

$
$\forall\ k\geq2$, $\forall$ $\lambda\in\Gamma_k$. \\
(1)$\lambda_i\leq\sigma_1(\lambda)$, $\forall$ $i=1,2,...,n$;\\
(2)$\sum\limits_{i=1}^{n}\frac{\partial\sigma^{\frac{1}{k}}_k(\lambda)}{\partial\lambda_i}\geq\Big(C^k_n\Big)^{\frac{1}{k}}$;\\
(3)$\sum\limits_{i=1}^{n}\frac{\partial(\frac{\sigma_k}{\sigma_l}(\lambda))^{\frac{1}{k-l}}}{\partial\lambda_i}\geq\Big(\frac{C^k_n}{C^l_n}\Big)^{\frac{1}{k-l}}$, where $k>l\geq0$.
$
(1)For $k\geq2$, $\lambda\in\Gamma_k$, by Lemma 1.4, we have $\sigma_1(\lambda|i)>0$ for each $i=1,2,...,n$. Then we have
$
\sigma_1(\lambda)=\lambda_i+\sigma_1(\lambda|i)>\lambda_i,\ \ \ \forall \ \ i=1,2,...,n.
$
(2)By Lemma 1.1 and Lemma 1.5(1), we have
$
\sum\limits_{i=1}^{n}\frac{\partial\sigma^{\frac{1}{k}}_k(\lambda)}{\partial\lambda_i}&=&\sum\limits_{i=1}^{n}\frac{1}{k}\sigma^{\frac{1}{k}-1}_k(\lambda)\sigma_{k-1}(\lambda| i)\nonumber\\
&=&\frac{n-k+1}{k}\sigma^{\frac{1}{k}-1}_k(\lambda)\cdot\sigma_{k-1}(\lambda)\nonumber\\
&\geq& (C^k_n)^{\frac{1}{k}}
$

$
$\forall$ $\lambda\in\Gamma_k$, $\lambda_1\geq\lambda_2\geq...\geq\lambda_n$, \\
(1)$\sigma_{k-1}(\lambda|n)\geq...\geq\sigma_{k-1}(\lambda|1)$;\\
(2)$\sigma_k(\lambda)\leq C^k_n\cdot\prod\limits_{i=1}^n\lambda_i$ and $\lambda_k>0$.
$
(1)By Lemma 1.1, we have
$
\sigma_{k-1}(\lambda|i)=\sigma_{k-1}(\lambda| i,j)+\lambda_j\sigma_{k-2}(\lambda|i,j),\nonumber\\
\sigma_{k-1}(\lambda|j)=\sigma_{k-1}(\lambda| j,i)+\lambda_i\sigma_{k-2}(\lambda|j,i).
$
It follows that
$
\sigma_{k-1}(\lambda|i)-\sigma_{k-1}(\lambda| j)=(\lambda_i-\lambda_j)\cdot\sigma_{k-2}(\lambda|i,j)
$
Then (1) follows from Lemma 1.4 clearly.

$\forall$ $\lambda\in\Gamma_k$, $\lambda_1\geq\lambda_2\geq...\geq\lambda_n$, \\
(1)$\lambda_1\sigma_{k-1}(\lambda|1)\geq\frac{k}{n}\sigma_{k}(\lambda)$, which implies that $\lambda_1$‘s upper bound is crucial for the uniformly ellipticity of equation $\sigma_k=f$;\\
(2)$\sigma_{k-1}(\lambda|k)\geq \theta(k,n)\sigma_{k-1}(\lambda)$.

(1)By Lemma 1, we have $\sigma_k(\lambda)=\lambda_1\cdot\sigma_{k-1}(\lambda| 1)+\sigma_{k}(\lambda|1)$. If $\sigma_{k}(\lambda|1)\leq0$, the inequality follows clearly. Now we assume $\sigma_{k}(\lambda|1)>0$, by Lemma 1.4, we have $(\lambda|1)\in \Gamma_k$. By Lemma 1.5(2), we have
$
\frac{k}{n-k}\cdot\frac{\sigma_{k}(\lambda|1)}{\sigma_{k-1}(\lambda| 1)}\leq\frac{\sigma_1(\lambda|1)}{n-1}\leq \lambda_1.
$
Then
$
\sigma_{k}(\lambda|1)\leq\frac{n-k}{k}\lambda_1\cdot\sigma_{k-1}(\lambda|1).
$
Combining $\sigma_k(\lambda)=\lambda_1\cdot\sigma_{k-1}(\lambda| 1)+\sigma_{k}(\lambda|1)$ and the above inequality, we have
$
\sigma_k(\lambda)\leq\lambda_1\cdot\sigma_{k-1}(\lambda| 1)+\frac{n-k}{k}\lambda_1\cdot\sigma_{k-1}(\lambda| 1)=\frac{n}{k}\lambda_1\cdot\sigma_{k-1}(\lambda|1).
$
This completes the proof of (1).\\
(2)By Lemma 1.1, we have
 $
\sigma_k(\lambda|1,k)+\lambda_1\sigma_{k-1}(\lambda| k)=\sigma_k(\lambda|k)&=&\sigma_k-\lambda_k\sigma_{k-1}(\lambda|k)\nonumber\\
&\geq&-\lambda_k\sigma_{k-1}(\lambda|k),\\
\sigma_{k-1}(\lambda|1,k)+\lambda_1\sigma_{k-2}(\lambda| 1,k)&=&\sigma_{k-1}(\lambda|k).
$
Eliminate $\lambda_1$ from above formula, we have
$
&&\sigma_{k-1}^2(\lambda|1,k)-\sigma_{k-2}(\lambda|1,k)\sigma_{k}(\lambda| 1,k)\nonumber\\
&\leq&\sigma_{k-1}(\lambda|k)\Big(\sigma_{k-1}(\lambda| 1,k)+\lambda_k\sigma_{k-2}(\lambda|1,k)\Big)\nonumber\\
&=&\sigma_{k-1}(\lambda| k)\sigma_{k-1}(\lambda|1)\leq \sigma_{k-1}^2(\lambda| k)
$
By Newton‘s inequality, we have
$
\sigma_{k-1}^2(\lambda|1,k)-\sigma_{k-2}(\lambda|1,k)\sigma_{k}(\lambda| 1,k)\geq\left(1-\frac{(k-1)(n-k-1)}{k(n-k)}\right)\sigma_{k-1}^2(\lambda|1,k).
$
Combining (1.18) with the inequality above, we have
$
\sigma_{k-1}(\lambda| k)\geq\sqrt{1-\frac{(k-1)(n-k-1)}{k(n-k)}}\sigma_{k-1}(\lambda|1,k).
$
It follows that
$
|\sigma_{k-1}(\lambda| 1,k)|\leq\sqrt{\frac{k(n-k)}{n-1}}\sigma_{k-1}(\lambda|k).
$
Therefore,
$
\sigma_{k-1}(\lambda|k)&=&\sigma_{k-1}(\lambda|1,k)+\lambda_1\sigma_{k-2}(\lambda| 1,k)\nonumber\\
&\geq&-C_k\sigma_{k-1}(\lambda|k)+\lambda_1\sigma_{k-2}(\lambda| 1,k),
$
where $C(n,k)=\sqrt{\frac{k(n-k)}{n-1}}$.\\

Hence,
$
\sigma_{k-1}(\lambda|k)\geq\frac{\lambda_1}{1+C(n,k)}\sigma_{k-2}(\lambda|1,k).
$
Then the result follows clearly by recursion.\\
For more inequalities, see\\
Mi Lin and Neil S. Trudinger, On some inequalities for elementary symmetric functions,
Bull. Austral. Math. Soc., 50 (1994), 317--326.

$
$\frac{\sigma_k(\lambda)}{\sigma_{k-1}(\lambda)}$ is concave w.r.t. $\lambda\in\Gamma_{k-1}$. We must make full use of the condition $\lambda\in\Gamma_{k-1}$. Generally, if $0\leq l\leq k$, we have that $\Big(\frac{\sigma_k(\lambda)}{\sigma_{k-l}(\lambda)}\Big)^{\frac{1}{k-l}}$ is concave w.r.t. $\lambda\in\Gamma_{k}$.
$
While $\lambda\in\Gamma_k$, see the proof in G.Lieberman‘s book [second order parabolic differential equations 2nd] P404 or D.S.MitrinoviC [Analytic Inequalities]P102.\\
We only need two show that for any $\lambda,\mu\in\Gamma_k$,
$
\frac{\sigma_k(\lambda+\mu)}{\sigma_{k-1}(\lambda+\mu)}\geq\frac{\sigma_k(\lambda)}{\sigma_{k-1}(\lambda)}+\frac{\sigma_k(\mu)}{\sigma_{k-1}(\mu)}
$
Once the above inequality has been established, it is easy to prove that $\Big(\frac{\sigma_k(\lambda)}{\sigma_{k-l}(\lambda)}\Big)^{\frac{1}{k-l}}$ is concave.
\\

Matrix case:
$(w_{ij})_{n\times n}$ is symmetric, and $\lambda(w_{ij})=(\lambda_1,\lambda_2,...,\lambda_n)$.
$
\sigma_k(D^2w)=\frac{1}{k!}\sum\limits_{i_1,...,i_k;j_1,...,j_k}\delta(i _1,...,i_k;j_1,...,j_k)w_{i_1j_1}...w_{i_kj_k}
$
where $\delta(\cdot;\cdot)$ is the generalized kronecker symbol.
$
\frac{\partial\sigma_k(D^2w)}{\partial w_{ij}}=\frac{1}{(k-1)!}\sum\limits_{i_1,...,i_{k-1};j_1,...,j_{k-1}}\delta(i,i_1,...,i_{k-1};j,j_1,...,j_{k-1})w_{i_1j_1}...w_{i_{k-1}j_{k-1}}.
$
Similarly, we can define
$
\frac{\partial^2\sigma_k(D^2w)}{\partial w_{ij}\partial w_{rs}}=\frac{1}{(k-2)!}\sum\limits_{i_1,...,i_{k-2};j_1,...,j_{k-2}}\delta(i,r,i_1,...,i_{k-2};j,s,j_1,...,j_{k-2})w_{i_1j_1}...w_{i_{k-2}j_{k-2}}.$

$W=(w_{ij})_{n\times n}$, and $\lambda(w_{ij})=(\lambda_1,\lambda_2,...,\lambda_n)$. \\
If $W$ is diagonal, $\lambda_i=w_{ii}$ is different from each other, then\\
(1)$\frac{\partial\lambda_i}{\partial w_{ii}}=1$, otherwise, $\frac{\partial\lambda_i}{\partial w_{rs}}=0$.\\
(2)$\frac{\partial^2\lambda_i}{\partial w_{ii}\partial w_{jj}}=\frac{1}{\lambda_i-\lambda_j}, i\neq j$, otherwise $\frac{\partial^2\lambda_i}{\partial w_{ij}\partial w_{kl}}=0$.

Some Corollary: If $W$ is diagonal, then\\
(1)$\frac{\partial\sigma_k(W)}{\partial w_{ii}}=\sigma_{k-1}(\lambda|i)$, otherwise, $\frac{\partial\sigma_k(W)}{\partial w_{ij}}=0$. It is easy to check that (by Lemma 1.1(5))
$
\sum\limits_{i,j,m}\frac{\partial\sigma_k(W)}{\partial w_{ij}}w_{im}w_{mj}=\sum\limits_{m}\lambda_m^2\sigma_{k-1}(\lambda|m)=\sigma_1(\lambda)\cdot\sigma_k(\lambda)+(k+1)\sigma_{k+1}(\lambda).
$

(2)Second derivatives:\\
$\frac{\partial^2\sigma_k(W)}{\partial w_{ij}\partial w_{rs}}=\sigma_{k-2}(\lambda|i,r)$, for $i=r,\ j=s,\ i\neq r$; \\ $\frac{\partial^2\sigma_k(W)}{\partial w_{ij}\partial w_{rs}}=-\sigma_{k-2}(\lambda|i,r)$, for $i=s,\ j=r,\ i\neq r$;\\
otherwise $\frac{\partial^2\sigma_k(W)}{\partial w_{ij}\partial w_{rs}}=0$.\\

Divergence free structure: $\sum\limits_{i=1}^n\partial_i\Big(\frac{\partial\sigma_k(W)}{\partial w_{ij}}\Big)=0$, for any $j=1,2,...,n$.\\

The above formula can be generalized to $F(W)=f(\lambda(W))$. If $W$ is diagonal, then\\
(1)$\frac{\partial F(W)}{\partial w_{ii}}=\frac{\partial f(\lambda)}{\partial\lambda_i}\delta_{ij}$.\\
(2)$\frac{\partial^2 F(W)}{\partial w_{ij}\partial w_{rs}}=\frac{\partial^2 f(\lambda)}{\partial\lambda_i\partial\lambda_r}\delta_{ij}\delta_{rs}+\frac{\frac{\partial f(\lambda)}{\partial\lambda_i}-\frac{\partial f(\lambda)}{\lambda_j}}{\lambda_i-\lambda_j }\delta_{is}\delta_{jr}(1-\delta_{ij})$.\\

$g(x)=\log\sigma_k(\lambda)$, $\lambda\in\Gamma_k$, then
$
\sum\limits_{i=1}^n(g_{ii}+\frac{g_i}{\lambda_i})\xi_i^2+\sum_{i\neq j}g_{ij}\xi_i\xi_j\geq0.
$

See Guan and Ma, Invention Mathematica.

$f(\lambda)$ is concave and its homogeneity degree is one $\Longleftrightarrow$ $\log f(\lambda)$ is concave.

原文地址:https://www.cnblogs.com/Analysis-PDE/p/11128375.html

时间: 2024-08-30 16:08:01

Sigma_k Equation的相关文章

HDU 2199 Can you solve this equation?(二分搜索)

题目链接 Problem Description Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;Now please try your lucky. Input The first line of the input contains an integer T(1<=T<=100) which means the number of

hdu 2199 Can you solve this equation?(高精度二分)

http://acm.hdu.edu.cn/howproblem.php?pid=2199 Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 13468    Accepted Submission(s): 6006 Problem Description Now,given the

HDU 2199 Can you solve this equation?(水题吗?!)

Problem Description: Now,given the equation 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,can you find its solution between 0 and 100;Now please try your lucky. Input: The first line of the input contains an integer T(1<=T<=100) which means the number of tes

FZU Problem 2102 Solve equation (数学啊 )

题目链接:http://acm.fzu.edu.cn/problem.php?pid=2102 Problem Description You are given two positive integers A and B in Base C. For the equation: A=k*B+d We know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in

HDOJ 4249 A Famous Equation DP

DP: DP[len][k][i][j] 再第len位,第一个数len位为i,第二个数len位为j,和的第len位为k 每一位可以从后面一位转移过来,可以进位也可以不进位 A Famous Equation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 500    Accepted Submission(s): 147 Proble

[ML]简单的Normal Equation对数据点进行线性回归

注明:本文仅作为记录本人的日常学习历程而存在. Normal Equation和上篇介绍的方法相比,简单许多.具体公式见吴恩达老师的coursera视频 1. generate_data用来生成实验中所用到的数据,数据总体分布在斜率为10-30之间随机取值,截距为200-5000之间随机取值的直线上 compute函数用来计算出目标直线参数: import numpy as np import matplotlib.pyplot as plt def compute(X,Y): return (

HDU 5937 Equation

题意: 有1~9数字各有a1, a2, -, a9个, 有无穷多的+和=. 问只用这些数字, 最多能组成多少个不同的等式x+y=z, 其中x,y,z∈[1,9]. 等式中只要有一个数字不一样 就是不一样的 思路: 计算下可以发现, 等式最多只有36个. 然后每个数字i的上界是17-i个 可以预先判掉答案一定是36的, 然后直接暴力搜索每个等式要不要就好了. 注意剪枝即可 1 const int maxn = 20; 2 int a[maxn]; 3 bool flag36; 4 int ans;

HDU 2199 Can you solve this equation?【二分查找】

解题思路:给出一个方程 8*x^4 + 7*x^3 + 2*x^2 + 3*x + 6 == Y,求方程的解. 首先判断方程是否有解,因为该函数在实数范围内是连续的,所以只需使y的值满足f(0)<=y<=f(100),就一定能找到该方程的解,否则就无解. 然后是求解过程, 假设一个区间[a,b],mid=(a+b)/2,如果f(a)*f(b)<0,那么函数f(x)在区间[a,b]至少存在一个零点,如果f(a)<0,说明0点在其右侧,那么将a的值更新为当前mid的值,如果f(a)&g

F-Chart.Engineering.Equation.Solver.Pro.v9.478-3D工程方程求解器

F-Chart.Engineering.Equation.Solver.Pro.v9.478-3D工程方程求解器 FunctionBay.RecurDyn.V8R4.SP1.1.Win64 Engineering Equation Solver的一 个主要特征是其高精确度的热力学和传输性质的数据库,提供了数百物质的方式来增强求解能力. Engineering Equation Solver是一款通用的方程求解程序,它可以数值化求解数千连接的非线性代数 和微分方程.该程序还可以用来解决微分和积分方