xxxxxx(1): LDA回顾以及变分EM

Latent Dirichlet Allocation (LDA)是一个主题模型,能够对文本进行建模,得到文档的主题分布。常用的模型参数估计方法有Gibbs Sampling和Variational Inference,网上有非常多关于LDA的介绍,最为经典的例如Rickjin的《LDA数学八卦》。本文旨在推导变分EM的全部过程。

转载请注明出处:http://blog.csdn.net/u011414416/article/details/51168242

本文参考了Blei在2003JMLR上发表的LDA论文,推导基于smoothed LDA(即对主题-词分布beta也施加了Dirichlet先验eta)。如有错误,欢迎指出。

时间: 2024-11-09 03:30:25

xxxxxx(1): LDA回顾以及变分EM的相关文章

Gaussian LDA(1): LDA回想以及变分EM

Latent Dirichlet Allocation (LDA)是一个主题模型,可以对文本进行建模.得到文档的主题分布.经常使用的模型參数预计方法有Gibbs Sampling和Variational Inference,网上有许多关于LDA的介绍,最为经典的比如Rickjin的<LDA数学八卦>.本文旨在推导变分EM的所有过程. 转载请注明出处:http://blog.csdn.net/u011414416/article/details/51168242 本文參考了Blei在2003JM

文本主题模型之LDA(三) LDA求解之变分推断EM算法

文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L

主题模型TopicModel:隐含狄利克雷分布LDA

http://blog.csdn.net/pipisorry/article/details/42649657 主题模型LDA简介 隐含狄利克雷分布简称LDA(Latent Dirichlet allocation),是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出. 同时它是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可.此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它. LDA首先由Blei, David

通俗理解LDA主题模型(boss)

0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(在本文第4 部分阐述) 一个采样:Gibbs采样 本文便按照上述5个步骤来阐述,希望读者看完本文后,能对LDA有个尽量清晰完整的了解.同时,本文基于邹博讲LDA的PPT.rickjin的LDA

变分贝叶斯VBEM 由浅入深

变分贝叶斯EM指的是变分贝叶斯期望最大化(VBEM, variational Bayes expectation maximization),这种算法基于变分推理,通过迭代寻找最小化KL(Kullback-Leibler)距离的边缘分布来近似联合分布,同时利用mean field 近似减小联合估计的复杂度. 变分贝叶斯EM方程最早是由BEAL M J. 在其论文<Variational Algorithms for Approximate Bayesian Inference>[D], Lon

LDA主题模型学习笔记5:C源码理解

1,说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做注释,代码可在这里下载:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Latent Dirichlet Allocation>中介绍的LDA模型,用变分EM算法求解参数. 为了使代码在vs2013中运行做了一些微小改动,但不影响原代码的逻辑. vs2013工程可在我的资源中下载: http://download.csdn.net/detail/happyer88/8861773 -

LDA理解

LDA只是一个求解思路. 1.理解LDA首先要理解EM算法,EM不能叫做一个算法,只是一个思想:它要求解的其实是一个极大似然估计,就是我用已知量去求解导致这个已知量出现的最大概率,而在这里又恰恰有点偏,这个已知量是我们开始给定的这个初值,我们要去用这个已知量去求解最大,然后再用这个最大值再带入到我们这个模型中,再去求解,这样反复迭代的过程叫做EM. 例子: 我们要求这个式子的极大似然,而是我们预先给定的值,这里面有一个隐变量z,而x是我们给定的样本,隐变量z就相当于我们在求导链式法则的时候,不能

变分自编码器解析

概述 译自https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 在讨论变分自动编码器时,为什么深度学习研究人员和概率机器学习人员会感到困惑? 什么是变体自动编码器? 为什么这个词会引起混乱? 这是因为神经网络和概率模型在基本概念和描述语言上存在差异.此教程的目标是弥合这一思想鸿沟,允许在这些领域之间进行更多的协作和讨论,并提供一致的实现方法. 变分自编码器用起来很酷,让我们能够设计复杂的数据生成模型,并将其应用于大型数据集.它

HMM - (补充) 参数求解之 F/B 算法细节

回顾 上篇通过EM算法思想来求解 HMM 的参数 \(\theta=(\pi, A,B)\) 即 初始状态概率(向量), 状态转移概率(矩阵), 发射概率矩阵. 在上帝视角, 即已知隐变量 Z , 则通过简单的词频统计, 再归一化 就求解参数了. 而问题在于我们不是上帝, 只能通过观测值 X , 通过 F/B 算法 来求解出 Z, 即: \(p(z_k|x) = \frac {p(z_k, x)}{p(x)}\) 这是求解目标 这里的 x 表示所有的 n 个样本嘛, 因此为了和 F, B 产生联