时间: 2024-10-06 21:07:41
Full卷积 Same卷积 Vaild卷积
Full卷积 Same卷积 Vaild卷积的相关文章
一维卷积及多维卷积
在泛函分析中,卷积.旋积或摺积(Convolution)是通过两个函数 f(x) 和 g(x) 生成第三个函数的一种数学算子: 表征函数 f(x) 与 g(x) 经过翻转和平移的重叠部分的面积. 1 一维卷积 1.1 一维卷积公式 原文地址:https://www.cnblogs.com/gengyi/p/9508917.html
卷积神经网络(CNN)之一维卷积、二维卷积、三维卷积详解
由于计算机视觉的大红大紫,二维卷积的用处范围最广.因此本文首先介绍二维卷积,之后再介绍一维卷积与三维卷积的具体流程,并描述其各自的具体应用. 二维卷积 一维卷积 三维卷积 原文地址:https://www.cnblogs.com/szxspark/p/8445327.html
深度学习面试题16:小卷积核级联卷积VS大卷积核卷积
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map)上的像素点在输入图片上映射的区域大小.再通俗点的解释是,特征图上的一个点对应输入图上的区域,如下图所示: 返回目录 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 像LeNet.AlexNet网络,都是用了较大的卷积核,目的是提取出输入图像更大邻域范围的信息,一般是卷积与池化操
分组卷积和深度可分离卷积
https://zhuanlan.zhihu.com/p/65377955 分组卷积:把特征图分成g组,分别用g组卷积核进行卷积然后在通道数相加 深度可分离卷积将卷积操作中的滤波和维数变换分开成两组卷积 原文地址:https://www.cnblogs.com/baitian963/p/12090321.html
关于卷积网络以及反卷积网络shape的计算
CNN的计算方式: w1 = (w - F_w + 2p) / s_w + 1 h1 = (h - F_h + 2p) / s_h + 1 其中 w, h 分别为上一层的宽高, Filters(kernel)的大小为 F_w, F_h strides 步长为: s_w, s_h p 为padding 的大小 DeCNN 的计算方式: w1 = (w -1 )* s_w + F_w - 2p h1 = (h -1 )* s_h + F_h - 2p 其中 w, h 分别为上一层的宽高, Filte
CNN卷积可视化与反卷积
1.<Visualizing and Understanding Convolutional Networks> 2.<Adaptive deconvolutional networks for mid and high level feature learning> 3.<Stacked What-Where Auto-encoders> https://blog.csdn.net/lemianli/article/details/53171951 https://b
第十二节,卷积神经网络(二)
一.三维卷积(Convolutions over Volumes) 前面已经讲解了对二维图像做卷积了,现在看看如何在三维立体上执行卷积. 我们从一个例子开始,假如说你不仅想检测灰度图像的特征,也想检测 RGB 彩色图像的特征.彩色图像如果是 6×6×3,这里的 3 指的是三个颜色通道,你可以把它想象成三个 6×6图像的堆叠.为了检测图像的边缘或者其他的特征,不是把它跟原来的 3×3 的过滤器做卷积,而是跟一个三维的过滤器,它的维度是 3×3×3,这样这个过滤器也有三层,对应红绿.蓝三个通道. 这
Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2
3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度,基础方面的非常多,随便看看就可以,只是很多没有把细节说得清楚和明白: 能把细节说清
TensorFlow框架(4)之CNN卷积神经网络详解
1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间