——纯属把之前写的搬过来——
二叉查找树从名字可以看出来,主要用于查找的数据结构。在二叉查找树中存放的数据,理想情况下每次查找都会使数据规模减半,所以查找的时间复杂度为O(log n)。但若构造二叉查找树的数列有序时,二叉查找树就退化为链表,所以二叉查找树最坏时间复杂度仅为O(n)。相对于AVL树、红黑树等数据结构,二叉查找树并不能保证最坏情况下的查找的算法复杂度,因此并不是一个好的数据结构,但相对于AVL树、红黑树这些来说,它的实现简单。因此也常拿来使用。
二叉查找树主要有下面几种操作:
TREE-SEARCH(x, k) 给定指向根的结点x和关键字k,返回包含k的结点
ITERATIVE-TREE-SEARCH(x, k) 上面查找的非递归版本(一般情况比递归版本快)
TREE-MINIMUM(x) 返回以x为根的子树最小元素的指针
TREE-MAXIMUM(x) 返回以x为根的子树最大元素的指针
TREE-SUCCESSOR(x) 返回x结点的后继结点
TREE-PREDECESSOR(x) 返回x结点的前趋结点
TREE-INSERT(T, z) 把z插入到以T为根的二叉查找树中
TREE-DELETE(T, z) 把z从以T为根据的二查找树中删除
二叉树基本操作C实现:
/*file:biTree.h*/ #ifndef CHIYX_BITREE #define CHIYX_BITREE #ifndef NULL #define NULL 0 #endif typedef int DataType; //二叉树的节点结构 typedef struct BiTreeNode { DataType data; struct BiTreeNode *parent; struct BiTreeNode *left; struct BiTreeNode *right; }BiTreeNode, *BiTree; //查找:返回第一个等于data域等于key的节点,不存在返回NULL BiTreeNode *search(BiTree *biTree, DataType key); //返回二叉树的最小节点,空树返回NULL BiTreeNode *minImum(BiTree *biTree); //返回二叉树的最大节点,空树返回NULL BiTreeNode *maxImum(BiTree *biTree); //返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL BiTreeNode *successor(BiTreeNode *x); //返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL BiTreeNode *predecessor(BiTreeNode *x); //将值data插入到二叉树中(生成一个值为data的节点) void insertNode(BiTree *biTree, DataType data); //删除一个值为data的节点 void deleteNode(BiTree *biTree, DataType data); //中序遍历二叉树 void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node)); #endif
/*file:biTree.c*/ #include <stdlib.h> #include "biTree.h" //查找:返回第一个等于data域等于key的节点,不存在返回NULL BiTreeNode *search(BiTree *biTree, DataType key) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->data != key) { if (key < curNode->data) { curNode = curNode->left; } else { curNode = curNode->right; } } return curNode; } //返回二叉树的最小节点,空树返回NULL BiTreeNode *minImum(BiTree *biTree) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->left != NULL) { curNode = curNode->left; } return curNode; } //返回二叉树的最大节点,空树返回NULL BiTreeNode *maxImum(BiTree *biTree) { BiTreeNode *curNode = *biTree; while (curNode != NULL && curNode->right != NULL) { curNode = curNode->right; } return curNode; } //返回节点x的后继节点,不存在后继(节点x为最大节点)返回NULL BiTreeNode *successor(BiTreeNode *x) { if (x == NULL) return NULL; //存在右子树,则后继节点为其右子树中最小的节点 if (x != NULL && x->right != NULL) { return minImum(&(x->right)); } while (x->parent != NULL && x->parent->right == x) { x = x->parent; } return x->parent; //错误版本为 x, 此处应该返回父结点 } //返回节点x的前驱节点,不存在前驱(节点x为最小节点)返回NULL BiTreeNode *predecessor(BiTreeNode *x) { if (x == NULL) return NULL; //存在左子树,则后继节点为其左子树中最大的节点 if (x != NULL && x->left != NULL) { return maxImum(&(x->left)); } while (x->parent != NULL && x->parent->left == x) { x = x->parent; } return x->parent; //错误版本为 x, 此处应该返回父结点 } void insertNode(BiTree *biTree, DataType data) { //创建节点 BiTreeNode *targetNode; targetNode = (BiTreeNode *)malloc(sizeof(BiTreeNode)); //没有足够内存 if (targetNode == NULL) return; targetNode->data = data; targetNode->parent = NULL; targetNode->left = NULL; targetNode->right = NULL; BiTreeNode *p, *y; p = *biTree; y = NULL; while (p != NULL ) { y = p; if (targetNode->data < p->data) { p = p->left; } else { p = p->right; } } //空树,将新节点置为树根 if (y == NULL) { *biTree = targetNode; } else { if (targetNode->data < y->data) { y->left = targetNode; } else { y->right = targetNode; } } targetNode->parent = y; } //删除一个值为data的节点 void deleteNode(BiTree *biTree, DataType data) { //查找待删除的节点 BiTreeNode *targetNode, *x, *y; targetNode = search(biTree, data); if (targetNode == NULL) return; //找出真正的删除节点,如果目标节点最多只有一个子树,则其为真正删除的节点 //否则其后继节点(最多只有一个子树,想想为什么)为真正删除的节点,然后将后继节点的值赋给目标节点 if (targetNode->left == NULL || targetNode->right == NULL) { y = targetNode; } else { y = successor(targetNode); } if (y->left != NULL) { x = y->left; } else { x = y->right; } if (x != NULL) { x->parent = y->parent; } //如果y是根节点, 则根节点变为x if (y->parent == NULL) { *biTree = x; } else { if (y->parent->right == y) { y->parent->right = x; } else { y->parent->left = x; } } if (y != targetNode) { targetNode->data = y->data; } //释放y占有的空间 free(y); } //中序遍历二叉树 void inorderTraversal(BiTree *biTree, void (*visitor)(BiTreeNode *node)) { BiTreeNode *curNode; curNode = *biTree; if (curNode != NULL) { //遍历左子树 inorderTraversal(&(curNode->left), visitor); //访问节点 visitor(curNode); //遍历右子树 inorderTraversal(&(curNode->right), visitor); } }
#include <stdio.h> #include <stdlib.h> #include "biTree.h" #define N 10 void printNode(BiTreeNode *node); int main(int argc, char *argv[]) { BiTreeNode *root; int i; root = NULL; int data[N] = {10, 23, 11, 98, 111, 87, 34, 11, 33, 8}; for (i = 0; i < N; i++) { insertNode(&root, data[i]); } printf("before delete:\n"); inorderTraversal(&root, printNode); printf("\n"); deleteNode(&root, 11); deleteNode(&root, 8); printf("after delete:\n"); inorderTraversal(&root, printNode); printf("\n"); exit(0); } void printNode(BiTreeNode *node) { printf("%d\t", node->data); }
时间: 2024-10-30 11:17:50