hdu 4565(矩阵快速幂)

题意:给出a,b,n,m按如下公式计算输出Sn

题解:和之前做过的一题很像,推导公式如下

(a+根号b)^n = xn + yn×根号b

–> (xn-1 + yn-1×根号b)×(a+根号b) = (a*xn-1 + b*yn-1) + (xn-1 + a×yn-1)×根号b

然后写成矩阵形式后

(a-根号b)^n = xn - yn×根号b

xn+yn×根号b = xn+yn×根号b + xn-yn×根号b - (xn-yn×根号b) = 2×xn + (a-根号b)

由于题目有给出范围(a-1)^n < b < a^n,所以 0 < a-根号b < 1,那么为了向上取整结果就是2*xn。

#include <stdio.h>
#include <string.h>
const int N = 3;
int a, b, n, m;
struct Mat {
    int g[N][N];
}ori, res;

Mat multiply(Mat x, Mat y) {
    Mat temp;
    memset(temp.g, 0, sizeof(temp.g));
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < 2; j++)
            for (int k = 0; k < 2; k++)
                temp.g[i][j] = (temp.g[i][j] + x.g[i][k] * y.g[k][j]) % m;
    return temp;
}

void calc(int n) {
    while (n) {
        if (n & 1)
            res = multiply(ori, res);
        n >>= 1;
        ori = multiply(ori, ori);
    }
}

int main() {
    while (scanf("%d%d%d%d", &a, &b, &n, &m) == 4) {
        memset(res.g, 0, sizeof(res.g));
        ori.g[0][0] = ori.g[1][1] = a % m;
        ori.g[0][1] = b % m;
        ori.g[1][0] = 1;
        res.g[0][0] = 1;
        calc(n);
        printf("%d\n", (2 * res.g[0][0]) % m);
    }
    return 0;
}
时间: 2024-10-10 05:38:53

hdu 4565(矩阵快速幂)的相关文章

HDU 4965 矩阵快速幂

顺手写了下矩阵类模板 利用到矩阵乘法的交换律 (A*B)^n == A * (B*A)^n-1 *B #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <vector> #include <utility> #include <stack> #includ

hdu 4965 矩阵快速幂 矩阵相乘性质

Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 170    Accepted Submission(s): 99 Problem Description One day, Alice and Bob felt bored again, Bob knows Alice is a gir

HDU 5895 矩阵快速幂+高次幂取模

HDU 5895 Mathematician QSC 题意:已知f(n)=2*f(n-1)+f(n-2), g(n)=∑f(i)²(0<=i<=n), 给出n,x,y,s, 求x^(g(n*y))%(s+1); 思路:OEIS查到了g(n)=f(n)*f(n+1)/2, f(n)可以用矩阵快速幂求得, 有一个定理可以用于高次幂取模 x^n %k=x^(n%phi(k)+phi(k)) %k, 此处phi(x)为欧拉函数,但是在对幂次取模时存在一个除2, 又因为(a/b)%k=(a%bk)/b,

hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); 所求的是f(x)取m的模,而x,m,a[0]至a[9]都是输入项 初拿到这道题,最开始想的一般是暴力枚举,通过for循环求出f(x)然后再取模,但是有两个问题,首先f(x)可能特别大,其

HDU 2855 (矩阵快速幂)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ 解题思路: 题目挺吓人的.先把完整组合数+Fibonacci展开来. 利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数: $S(0)=f(0)$ $S(1)=f(2)$ $S(2)=f(4)$ $S(n)=f(2*n)$ 这样矩阵快速幂就可以了,特判$n=0$时的情况. 快速幂矩阵

hdu 4549 (矩阵快速幂+费马小定理)

题意:已知F0=a,F1=b,Fn=Fn-1*Fn-2,给你a,b,n求Fn%1000000007的值 思路:我们试着写几组数 F0=a F1=b F2=a*b F3=a*b2 F4=a2*b3 F5=a3*b5 我们发现a,b的系数其实是斐波那契数列,我们只需用矩阵快速幂求出相应系数就行,但是 这个系数随着增长会特别大,这时我们需要利用费马小定理进行降幂处理 费马小定理 ap-1≡1(mod p) 代码: #include <iostream> #include <cmath>

HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂

装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1]*f[n-2].然后a和b系数都是呈斐波那契规律增长的.需要先保存下来指数.但是太大了.在这里不能用小费马定理.要用降幂公式取模.(A^x)%C=A^(x%phi(C)+phi(C))%C(x>=phi(C)) Phi[C]表示不大于C的数中与C互质的数的个数,可以用欧拉函数来求. 矩阵快速幂也不

hdu 2842(矩阵快速幂+递推)

题意:一个中国环的游戏,规则是一个木棒上有n个环,第一个环是可以随意放上或拆下的,剩下的环x如果想放上或拆下必须前一个环x-1是放上的且前x-2个环全部是拆下的,问n个环最少多少次操作可以全部拆掉. 题解:需要进行递推,首先第一步肯定是要拆第n个环保证操作次数最少,因为后面的环是否存在对前面的环不造成影响,而先拆前面的如果要拆后面的环还是要把前面的放上,f(n)表示拆掉前n个环需要的最少操作次数,先拆第n个要拆前n-2个再拆第n个,花费f(n-2)+1,然后这时是00-0010,要拆第n-1个需

hdu 4291(矩阵快速幂 + 循环节)

题意:求s s = g(g(g(n))) mod 1000000007 其中g(n) g(n) = 3g(n - 1) + g(n - 2) g(1) = 1 g(0) = 0 题解:普通的矩阵快速幂会超时,看到别人的题解是需要计算循环节得到小的MOD从而减小计算量.1000000007太大,需要计算更小的一个循环节,新技能get. #include <stdio.h> #include <string.h> struct Mat { long long g[3][3]; }ori