【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

题目描述

给一个包含n个点,m条边的无向连通图。从顶点1出发,往其余所有点分别走一次并返回。

往某一个点走时,选择总长度最短的路径走。若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径(如路径A为1,32,11,路径B为1,3,2,11,路径B字典序较小。注意是序列的字典序的最小,而非路径中节点编号相连的字符串字典序最小)。到达该点后按原路返回,然后往其他点走,直到所有点都走过。

可以知道,经过的边会构成一棵最短路径树。请问,在这棵最短路径树上,最长的包含K个点的简单路径长度为多长?长度为该最长长度的不同路径有多少条?

这里的简单路径是指:对于一个点最多只经过一次的路径。不同路径是指路径两端端点至少有一个不同,点A到点B的路径和点B到点A视为同一条路径。

输入

第一行输入三个正整数n,m,K,表示有n个点m条边,要求的路径需要经过K个点。接下来输入m行,每行三个正整数Ai,Bi,Ci(1<=Ai,Bi<=n,1<=Ci<=10000),表示Ai和Bi间有一条长度为Ci的边。数据保证输入的是连通的无向图。

输出

输出一行两个整数,以一个空格隔开,第一个整数表示包含K个点的路径最长为多长,第二个整数表示这样的不同的最长路径有多少条。

样例输入

6 6 4
1 2 1
2 3 1
3 4 1
2 5 1
3 6 1
5 6 1

样例输出

3 4



题解

堆优化Dijkstra+DFS树+树的点分治

我会说本题难点在于求最短路径树吗?

首先题意理解了半天,还是不懂“而非路径中节点编号相连的字符串字典序最小”是啥意思,后来才发现还有这种非人类理解方法...

求题目要求的最短路径树方法:先求出最短路图(由所有构成最短路的边构成的图,对字典序没有要求),然后按照字典序求出最短路图的DFS树即为最短路径树。

证明:最短路径树一定在最短路图上,而修改字典序优先DFS树的任意一条边都会使字典序增大,因此命题得证

求出最短路径树之后就是点分治的问题了。

由于本题的点分治是固定点数的(即固定边数),因此可以直接开数组记录一下某深度的最大权值,然后使用类似于树形dp的方法来求答案。

具体地,设f[i]为当前子树深度为i的最大边权和,g[i]为之前子树以及根节点深度为i的最大边权和,那么对答案的贡献即为f[i]+g[k-1-i]。

可以证明时间复杂度最坏情况下是$O(n\log n)$的。

另外注意清空数组时不能使用memset,否则时间复杂度直接起飞。

数组多的不忍直视= =

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <utility>
#include <vector>
#define N 30010
#define inf 0x3fffffff
using namespace std;
priority_queue<pair<int , int> > q;
vector<int> v[N];
int hh[N] , tt[N << 2]  , ll[N << 2] , nn[N << 2] , cc = 1 , vv[N] , dd[N] , uu[N];
int n , k , head[N] , to[N << 1] , len[N << 1] , next[N << 1] , cnt;
int vis[N] , root , sum , si[N] , bs[N] , f[N] , g[N] , sf[N] , sg[N] , md , deep[N] , dis[N] , ans , num;
void aa(int x , int y , int z)
{
	tt[++cc] = y , ll[cc] = z , nn[cc] = hh[x] , hh[x] = cc;
}
void add(int x , int y , int z)
{
	to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
}
bool cmp(int a , int b)
{
	return tt[a] < tt[b];
}
void dijkstra()
{
	int x , i;
	memset(dd , 0x3f , sizeof(dd));
	dd[1] = 0 , q.push(make_pair(0 , 1));
	while(!q.empty())
	{
		x = q.top().second , q.pop();
		if(vv[x]) continue;
		vv[x] = 1;
		for(i = hh[x] ; i ; i = nn[i])
			if(dd[x] == dd[tt[i]] + ll[i])
				v[tt[i]].push_back(i ^ 1);
		for(i = hh[x] ; i ; i = nn[i])
			if(dd[tt[i]] > dd[x] + ll[i])
				dd[tt[i]] = dd[x] + ll[i] , q.push(make_pair(-dd[tt[i]] , tt[i]));
	}
}
void dfs(int x)
{
	int i;
	sort(v[x].begin() , v[x].end() , cmp);
	for(i = 0 ; i < (int)v[x].size() ; i ++ )
		if(!uu[tt[v[x][i]]])
			uu[tt[v[x][i]]] = 1 , add(x , tt[v[x][i]] , ll[v[x][i]]) , add(tt[v[x][i]] , x , ll[v[x][i]]) , dfs(tt[v[x][i]]);
}
void getroot(int x , int fa)
{
	int i;
	bs[x] = 0 , si[x] = 1;
	for(i = head[x] ; i ; i = next[i])
		if(!vis[to[i]] && to[i] != fa)
			getroot(to[i] , x) , si[x] += si[to[i]] , bs[x] = max(bs[x] , si[to[i]]);
	bs[x] = max(bs[x] , sum - si[x]);
	if(bs[x] < bs[root]) root = x;
}
void getdeep(int x , int fa)
{
	int i;
	for(i = head[x] ; i ; i = next[i])
	{
		if(!vis[to[i]] && to[i] != fa)
		{
			deep[to[i]] = deep[x] + 1 , dis[to[i]] = dis[x] + len[i] , md = max(md , deep[to[i]]);
			if(dis[to[i]] > f[deep[to[i]]]) f[deep[to[i]]] = dis[to[i]] , sf[deep[to[i]]] = 1;
			else if(dis[to[i]] == f[deep[to[i]]]) sf[deep[to[i]]] ++ ;
			getdeep(to[i] , x);
		}
	}
}
void query(int x)
{
	int i , j , sm = 0;
	vis[x] = 1;
	for(i = head[x] ; i ; i = next[i])
	{
		if(!vis[to[i]])
		{
			md = deep[to[i]] = 1 , dis[to[i]] = len[i] , f[1] = len[i] , sf[1] = 1 , getdeep(to[i] , x);
			for(j = 1 ; j <= md && j <= k ; j ++ )
			{
				if(ans < f[j] + g[k - j]) ans = f[j] + g[k - j] , num = sf[j] * sg[k - j];
				else if(ans == f[j] + g[k - j])num += sf[j] * sg[k - j];
			}
			for(j = 1 ; j <= md && j <= k ; j ++ )
			{
				if(g[j] < f[j]) g[j] = f[j] , sg[j] = sf[j];
				else if(g[j] == f[j]) sg[j] += sf[j];
			}
			for(j = 1 ; j <= md ; j ++ ) f[j] = -inf , sf[j] = 0;
			sm = max(sm , md);
		}
	}
	for(i = 1 ; i <= sm && i <= k ; i ++ ) g[i] = -inf , sg[i] = 0;
	for(i = head[x] ; i ; i = next[i])
		if(!vis[to[i]])
			root = 0 , sum = si[to[i]] , getroot(to[i] , x) , query(root);
}
int main()
{
	int m , i , x , y , z;
	scanf("%d%d%d" , &n , &m , &k) , k -- ;
	for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x , &y , &z) , aa(x , y , z) , aa(y , x , z);
	dijkstra() , uu[1] = 1 , dfs(1);
	memset(f , 0xc0 , sizeof(f)) , memset(g , 0xc0 , sizeof(g)) , g[0] = 0 , sg[0] = 1;
	bs[0] = inf , sum = n , getroot(1 , 0) , query(root);
	printf("%d %d\n" , ans , num);
	return 0;
}
时间: 2024-12-24 22:58:57

【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治的相关文章

【51nod1443】路径和树(堆优化dijkstra乱搞)

点此看题面 大致题意:给你一个无向联通图,要求你求出这张图中从u开始的权值和最小的最短路径树的权值之和. 什么是最短路径树? 从\(u\)开始到任意点的最短路径与在原图中相比不变. 题解 既然要求最短路径,那么最容易想到的就是\(dijkstra\)和\(SPFA\)(毕竟Floyd的时间复杂度难以承受),又由于黄学长说能用\(dijkstra\)时尽量用\(dijkstra\),所以,我就打了一个堆优化的\(dijkstra\)开始乱搞. 其实,这道题目的思路真的挺简单的,只要朴素地做一遍\(

【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a,b),(c,d)表示,对于任意两个国家x,y,如果a<=x<=b,c<=y<=d,那么在xy之间建造一条道路.Seter保证不会有一个国家与自己之间有道路. Seter好不容易建好了所有道路,他现在在位于P号的首都.Seter想知道P号国家到任意一个国家最少需要经过几条道路.当然,Se

配对堆优化Dijkstra算法小记

关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏树,斜堆,随机堆--),具体时间复杂度: 合并(Merge):$O(1)$: 插入(Insert/Push):$O(1)$: 修改值(Change):$O(1) \sim O(\log n)$: 取出维护的最值(Top):$O(1)$: 弹出堆顶元素(Pop):$O(\log n)$: 我们依然拿洛

BZOJ3040 最短路 (堆优化dijkstra)

这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为了偷懒直接用的STL的priority_queue,没办法改变权值,所以都是直接把pair压进堆里.然后时间复杂度O(mlogm),空间复杂度O(m),不靠谱.手写二叉堆?改变权值是O(logn)的,所以时间复杂度O(mlogn),空间复杂度O(n),还是要T.看来是需要一种比较牛逼的堆了. Fib

EOJ 1848 你是ACM吗? 用二叉堆优化dijkstra + spfa算法的学习

Description  随着中国经济的腾飞,中国的物流产业迎来了发展的春天.特别是在上海这样一个拥有广阔国内腹地的国际化大都市,物流业以空前的速度膨胀. 当然是大蛋糕就会吸引许多馋嘴猫,馋嘴猫多了就会有残酷的竞争.当大量资金流入物流产业时,KOP 集团为了稳坐在国内物流业的第一把交椅,决定对现行的运输方案进行改良,以减少自己的成本同时使其它竞争者知难而退. 作为世界100强的KOP集团当然知道要找到最优运输方案,肯定得靠数学和算法很好的软件工程师,于是他们理所当然地找到华东师范大学软件学院.决

luogu P3371 &amp; P4779 ---单源最短路径spfa &amp; 最大堆优化Dijkstra

P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i

【堆优化Dijkstra+字典序最短路方案】HDU1385-Minimum Transport Cost

[题目大意] 给出邻接矩阵以及到达各个点需要付出的代价(起点和终点没有代价),求出从给定起点到终点的最短路,并输出字典序最小的方案. [思路] 在堆优化Dijkstra中,用pre记录前驱.如果新方案和旧方案相等,比较两个方案的字典序. [坑点] 我先求出了最短路(包括终点要付出代价),输出的时候再减去终点的代价. 有可能会给出S==T的情况--在这种情况下,最短路就是0,减去代价要变成负数了QAQ所以要特判一下.坑了好几个小时orz 1 #include<iostream> 2 #inclu

【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra

题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个城市登山,而是希望去另外什么地方喝下午茶.幸运的是,FGD的旅程不是既定的,他可以在某些旅行方案之间进行选择.由于FGD非常讨厌乘车的颠簸,他希望在满足他的要求的情况下,旅行的距离尽量短,这样他就有足够的精力来欣赏风景或者是泡MM了^_^.整个城市交通网络包含N个城市以及城市与城市之间的双向道路M条

BZOJ 2118 墨墨的等式 堆优化Dijkstra

题目大意:给定n个物品,每个物品有一个非负价值,问[L,R]区间内有多少价值可以被凑出来 好题!!! 如果物品数量可以为负,显然求个gcd就行了 现在物品数量必须非负 任选一个ai>0,如果一个价值k?ai+x(0≤x<ai,k≥0)可以被凑出来,那么显然(k+1)?ai+x,(k+2)?ai+x,...都可以被凑出来 显然如果我们对于每个x都找到最小的k满足k?ai+x可以被凑出来,这个问题就解决了 那么怎么求呢?最短路,使用堆优化Dijkstra即可 时间复杂度O(n?ai?log2ai)