算法导论17:摊还分析学习笔记

在摊还分析中,通过求数据结构的一系列的操作的平均时间,来评价操作的代价。这样,即使这些操作中的某个单一操作的代价很高,也可以证明平均代价很低。摊还分析不涉及概率,它可以保证最坏情况下每个操作的平均性能。

摊还分析有三种常用的技术:

聚合分析,它确定$n$个操作的总代价的上界为$T(n)$,所以每个操作的平均代价为$\frac{{T(n)}}{n}$。每个操作都有相同的摊还代价。

核算法:分析每个操作的摊还代价,不同于聚合分析,每种操作的摊还代价是不同的,核算法将序列中较早的操作的余额作为“信用”储存起来,与数据结构中的特定对象相关联,在随后的操作中,储存的信用可以用来进行支付。

势能法:与核算法类似,也是分析每个操作的代价,但将势能作为一个整体存储,而与数据结构中的某个对象无关。

一、聚合分析

以栈操作为例:

存在3种操作:1、$push$ 2、$pop$ 3、$multipop$

直观地分析复杂度:因为栈的大小最大为$n$,所以$multipop$的最坏情况为$O(n)$,所以,由n个$push$,$pop$,$multipop$组成的操作序列的最坏代价为$O( n^2)$,因为序列可能包含$O(n)$个操作序列。

上面的分析给出的界并不是紧确界,实际上,在一个空栈上执行$n$个$push$, $pop$, $multipop$的操作序列,代价最多为$O(n)$。这是因为,当一个对象压入栈后,至多将其弹出一次。所以,对于一个非空的栈,可以执行的$pop$的次数(包含$multipop$中的$pop$)最多与$push$操作次数一样,即$n$次。所以,对任意的$n$,任意一个由$n$个$push$ , $pop$,$multipop$组成的操作序列,最多花费$O(n)$。所以,每个操作的摊还代价为$O(1)$。

二、核函数

核算法,对不同的操作赋予不同的费用,这个费用就是摊还代价。当一个操作的摊还代价超过实际代价的时候,将差额存入数据结构中的特定对象,存入的差额称为信用。对于后续操作中,摊还代价小于实际代价的情况,信用可以用来支付差额。

  因为希望通过分析摊还代价来说明每个操作的平均代价的很小,所以应该确保$n$个操作序列的摊还代价是实际代价的上界。如果${c_i}$ 表示第i个操作的真实代价,而${c‘_i}$表示摊还代价,则对于任意的$n$,有:$\sum\limits_{i = 1}^n {{c_i}^\prime }  \ge \sum\limits_{i = 1}^n {{c_i}} $。因为信用就是摊还代价和实际代价的差值,即 $\sum\limits_{i = 1}^n {{c_i}^\prime }  - \sum\limits_{i = 1}^n {{c_i}} $,所以需要保持数据结构中的总信用永远为非负值。

依然以站操作为例:下面证明,如果按照摊还代价进行缴费,则可以支付任意的$n$个栈操作序列。在$push$操作时,共缴费2美元,其中1美元支付$push$的实际代价,将剩余的1美元存入插入的元素,作为信用。这样,每个插入的元素都具有1美元的信用。这1美元的信用,实际上是用来支付$pop$操作的预付费。当执行一个$pop$的时候,并不缴额外的费用,而是使用信用来支付实际代价。$multipop$也一样。所以,对任意的n个PUSH, POP, MULTIPOP组成的序列,总摊还代价为实际代价的上界,总摊还代价为$O(n)$。

三、势能法

势能法与核算法类似,但是势能法并不将预付代价表示为数据结构中特定对象的信用,而是表示为“势能”。势能是与整个数据结构相关联,而不是某个特定的对象。将势能释放,就可以支付未来操作的代价。

势能法如下:对一个初始数据结构 ${D_0}$执行$n$个操作。对于i = 1, 2,...,n, ${c_i}$表示第i个操作的实际代价, ${D_i}$表示在数据结构 ${D_{i - 1}}$上执行第i个操作得到的数据结构。势函数$\varphi $将每个数据结构${D_i}$映射到一个实数 $\varphi ({D_i})$,这个值就是关联到数据结构 的势。所以,第i个操作的摊还代价为${c‘_i} = {c_i} + \varphi ({D_i}) - \varphi ({D_{i - 1}})$。每个操作的摊还代价等于其实际代价加上此操作引起的势能变化。

势能法其实就是核函数的总体分析。

时间: 2024-11-21 00:13:54

算法导论17:摊还分析学习笔记的相关文章

[算法导论]#1 摊还分析

目录 引言 聚集分析 记账方法 势能法 总结 引言 一个哈希表多大合适? 数据量为\(n?\),如果哈希表无限大(>=\(n?\)),那么时间复杂度是\(O(1)?\)的,不过很显然,虽然节省了时间,但是浪费了空间. 实际上在我们不知道数据量的情况下,我们无法确定哈希表的大小,这时我们有个很美丽的数据结构->动态表 动态表的工作原理 建立一个表,初始化大小为1. 如果表的容量不够,那么就把大小扩大为原来的两倍,将原来表的内容复制一遍 把原来表的内存释放,再执行插入 容量会以1,2,4,8,16

MIT算法导论——第一讲.Analysis of algorithm

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第一节-------课程简介及算法分析 Analysis of algorithm 算法分析:关于计算机程序在效率和资源利用方面的理论

MIT算法导论——第二讲.Solving Recurrence

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第二节-------渐近符号.递归及解法 Solving Recurrence 第二节课的内容比较偏数学化,没有算法方面的知识.但尽管

MIT算法导论——第五讲.Linear Time Sort

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第五节-------线性时间排序 Linear Time Sort 这节课的主要内容是分析基于比较的排序能够达到的最快效率以及介绍几种

MIT算法导论——第四讲.Quicksort

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第四节-------快速排序 Quicksort 这节课的主要内容分为两部分,一部分是介绍快速排序算法,分析其在最好.最坏以及最好最差

MIT算法导论——第三讲.The Divide-and-Conquer

本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. Leiserson和Erik Demaine老师的讲解.(http://v.163.com/special/opencourse/algorithms.html) 第三节-------分治法 The Divide-and-Conquer 这节课的主要内容是介绍分治法的思想,以及一些应用分治法思想的

算法导论读书笔记(17)

算法导论读书笔记(17) 目录 动态规划概述 钢条切割 自顶向下的递归实现 使用动态规划解决钢条切割问题 子问题图 重构解 钢条切割问题的简单Java实现 动态规划概述 和分治法一样, 动态规划 (dynamic programming)是通过组合子问题的解而解决整个问题的.分治法是将问题划分成一些独立的子问题,递归地求解各子问题,然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题并不独立的情况,即各子问题包含公共的子子问题.在这种情况下,分治法会重复地求解公共的子子问题.而动态

算法导论读书笔记(18)

算法导论读书笔记(18) 目录 最长公共子序列 步骤1:描述最长公共子序列的特征 步骤2:一个递归解 步骤3:计算LCS的长度 步骤4:构造LCS LCS问题的简单Java实现 最长公共子序列 某给定序列的子序列,就是将给定序列中零个或多个元素去掉后得到的结果.其形式化定义如下:给定一个序列 X = < x1 , x2 , - , xm >,另一个序列 Z = < z1 , z2 , - , zk >,如果 Z 满足如下条件则称 Z 为 X 的 子序列 (subsequence),

《算法导论》读书笔记(五)

摘要: 本章介绍了二叉查找树的概念及操作.主要内容包括二叉查找树的性质,如何在二叉查找树中查找最大值.最小值和给定的值,如何找出某一个元素的前驱和后继,如何在二叉查找树中进行插入和删除操作.在二叉查找树上执行这些基本操作的时间与树的高度成正比,一棵随机构造的二叉查找树的期望高度为O(lgn),从而基本动态集合的操作平均时间为θ(lgn). 1.二叉查找树 二叉查找树是按照二叉树结构来组织的,因此可以用二叉链表结构表示.二叉查找树中的关键字的存储方式满足的特征是:设x为二叉查找树中的一个结点.如果