【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)

3994: [SDOI2015]约数个数和

Description

设d(x)为x的约数个数,给定N、M,求  

Input

输入文件包含多组测试数据。

第一行,一个整数T,表示测试数据的组数。

接下来的T行,每行两个整数N、M。

Output

T行,每行一个整数,表示你所求的答案。

Sample Input

2

7 4

5 6

Sample Output

110

121

HINT

1<=N, M<=50000

1<=T<=50000

Source

Round 1 感谢yts1999上传

【分析】

  这题我竟然没写题解??

  好吧。。【copy一下别人家的。。

转自:http://blog.csdn.net/qq_21995319/article/details/48752665

2017-01-21 11:22:15

时间: 2024-10-05 06:15:07

【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)的相关文章

[SDOI2015] 约数个数和 (莫比乌斯反演)

[SDOI2015]约数个数和 题目描述 设d(x)为x的约数个数,给定N.M,求 \(\sum^N_{i=1}\sum^M_{j=1}d(ij)\) 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数T,表示测试数据的组数.接下来的T行,每行两个整数N.M. 输出格式: T行,每行一个整数,表示你所求的答案. 输入输出样例 输入样例#1: 2 7 4 5 6 输出样例#1: 110 121 说明 \(1<=N, M<=50000\) \(1<=T<=50000\

【bzoj3994】[SDOI2015]约数个数和 莫比乌斯反演

题目描述 设d(x)为x的约数个数,给定N.M,求   输入 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. 输出 T行,每行一个整数,表示你所求的答案. 样例输入 2 7 4 5 6 样例输出 110 121 题解 莫比乌斯反演 根据 bzoj4176 推出的结论, 那么就有: 预处理mu及其前缀和. 由于要处理多组询问,所以需要用O(n√n)的时间预处理出f,然后对于每组询问分块来求. #include <cstdio> #incl

luogu P3327 [SDOI2015]约数个数和 莫比乌斯反演

题面 我的做法基于以下两个公式: \[[n=1]=\sum_{d|n}\mu(d)\] \[\sigma_0(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\] 其中\(\sigma_0(n)\)表示\(n\)的约数个数 第一个公式是莫比乌斯函数的基本性质,至于第二个公式的证明,可以考虑\(i*j\)中每一个质因子对 \(\sigma_0(i*j)\) 的贡献,对于一个质因子 \(p\) ,若它在 \(i\) 中的次数为 \(k_1\) ,它在 \(j\) 中的次数为

BZOJ 3994 Sdoi2015 约数个数和 莫比乌斯反演

题目大意:求∑ni=1∑mj=1d(ij) 首先我们有一个很神的结论: ∑ni=1∑mj=1d(ij)=∑ni=1∑mj=1?ni??mj?[gcd(i,j)==1] 这个结论是怎么来的呢?我们可以先证明这个: d(nm)=∑i|n∑j|m1?1[gcd(i,j)==1] 显然这个式子的前缀和就是上面的式子 现在我们来证明这个式子是对的 我们分开讨论每一个质数p对答案的贡献 不妨设n=n′?pk1,m=m′?pk2 那么左式中p的贡献显然是k1+k2+1 右式中只考虑p的话,满足要求的数对(i,

[SDOI2015][bzoj3994] 约数个数和 [莫比乌斯反演]

题面: 传送门 思路: 首先,我们需要证明一个结论:d(i*j)等于sigma(gcd(x,y)==1),其中x为i的约数,y为j的约数 对于nm的每一个质因子pi分别考虑,设n = pi^ai + n',m = pi^bi + m' 那么显然质因子pi对d(nm)的贡献为(ai+bi+1) 同理,考虑右边的式子,我们发现质数pi对右侧做的贡献仍然是(ai+bi+1),即如下的(x,y) (pi^ai,1) (pi^(ai-1),1) ..... (1,1) .....(1,pi^(bi-1))

[BZOJ 3994]约数个数和 莫比乌斯反演

自己是在是弱,看了半天才看懂题解 写公式实在是麻烦,搬家一份: #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #define N 101000 #define pos(i,a,b) for(int i=(a);i<=(b);i++) using namespace std; #define LL long long int t,n,m; int notpr

BZOJ 3994 [SDOI2015]约数个数和 (神定理+莫比乌斯反演)

3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit:128 MB Submit: 239  Solved: 176 [Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7

BZOJ 3994: [SDOI2015]约数个数和

3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 898  Solved: 619[Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7

3994: [SDOI2015]约数个数和

3994: [SDOI2015]约数个数和 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 858  Solved: 587[Submit][Status][Discuss] Description 设d(x)为x的约数个数,给定N.M,求   Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Output T行,每行一个整数,表示你所求的答案. Sample Input 2 7