创建二叉树实例

1.#include <stdio.h>
#include <stdlib.h>
#include "BTree.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

struct Node
{
    BTreeNode header;
    char v;
};

void printf_data(BTreeNode* node)
{
    if( node != NULL )
    {
        printf("%c", ((struct Node*)node)->v);
    }
}

int main(int argc, char *argv[])
{
    BTree* tree = BTree_Create();
    
    struct Node n1 = {{NULL, NULL}, ‘A‘};
    struct Node n2 = {{NULL, NULL}, ‘B‘};
    struct Node n3 = {{NULL, NULL}, ‘C‘};
    struct Node n4 = {{NULL, NULL}, ‘D‘};
    struct Node n5 = {{NULL, NULL}, ‘E‘};
    struct Node n6 = {{NULL, NULL}, ‘F‘};
    
    BTree_Insert(tree, (BTreeNode*)&n1, 0, 0, 0);
    BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);
    BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);
    BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);
    BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);
    BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);
    
    printf("Height: %d\n", BTree_Height(tree));
    printf("Degree: %d\n", BTree_Degree(tree));
    printf("Count: %d\n", BTree_Count(tree));
    printf("Position At (0x02, 2): %c\n", ((struct Node*)BTree_Get(tree, 0x02, 2))->v);
    printf("Full Tree: \n");
    
    BTree_Display(tree, printf_data, 4, ‘-‘);
    
    BTree_Delete(tree, 0x00, 1);
    
    printf("After Delete B: \n");
    printf("Height: %d\n", BTree_Height(tree));
    printf("Degree: %d\n", BTree_Degree(tree));
    printf("Count: %d\n", BTree_Count(tree));
    printf("Full Tree: \n");
    
    BTree_Display(tree, printf_data, 4, ‘-‘);
    
    BTree_Clear(tree);
    
    printf("After Clear: \n");
    printf("Height: %d\n", BTree_Height(tree));
    printf("Degree: %d\n", BTree_Degree(tree));
    printf("Count: %d\n", BTree_Count(tree));
    
    BTree_Display(tree, printf_data, 4, ‘-‘);
    
    BTree_Destroy(tree);
    
    return 0;
}

2.#ifndef _BTREE_H_
#define _BTREE_H_

#define BT_LEFT 0
#define BT_RIGHT 1

typedef void BTree;
typedef unsigned long long BTPos;
/*  创建二叉树  */
typedef struct _tag_BTreeNode BTreeNode;
struct _tag_BTreeNode
{
    BTreeNode* left;
    BTreeNode* right;
};

typedef void (BTree_Printf)(BTreeNode*);

BTree* BTree_Create();

void BTree_Destroy(BTree* tree);

void BTree_Clear(BTree* tree);

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Root(BTree* tree);

int BTree_Height(BTree* tree);

int BTree_Count(BTree* tree);

int BTree_Degree(BTree* tree);

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);

#endif

3.#include <stdio.h>
#include <malloc.h>
#include "BTree.h"

typedef struct _tag_BTree TBTree;
struct _tag_BTree
{
    int count;
    BTreeNode* root;
};

static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div) // O(n)
{
    int i = 0;
    
    if( (node != NULL) && (pFunc != NULL) )
    {
        for(i=0; i<format; i++)
        {
            printf("%c", div);
        }
        
        pFunc(node);
        
        printf("\n");
        
        if( (node->left != NULL) || (node->right != NULL) )
        {
            recursive_display(node->left, pFunc, format + gap, gap, div);
            recursive_display(node->right, pFunc, format + gap, gap, div);
        }
    }
    else
    {
        for(i=0; i<format; i++)
        {
            printf("%c", div);
        }
        printf("\n");
    }
}

static int recursive_count(BTreeNode* root) // O(n)
{
    int ret = 0;
    
    if( root != NULL )
    {
        ret = recursive_count(root->left) + 1 + recursive_count(root->right);
    }
    
    return ret;
}

static int recursive_height(BTreeNode* root) // O(n)
{
    int ret = 0;
    
    if( root != NULL )
    {
        int lh = recursive_height(root->left);
        int rh = recursive_height(root->right);
        
        ret = ((lh > rh) ? lh : rh) + 1;
    }
    
    return ret;
}

static int recursive_degree(BTreeNode* root) // O(n)
{
    int ret = 0;
    
    if( root != NULL )
    {
        if( root->left != NULL )
        {
            ret++;
        }
        
        if( root->right != NULL )
        {
            ret++;
        }
        
        if( ret == 1 )
        {
            int ld = recursive_degree(root->left);
            int rd = recursive_degree(root->right);
            
            if( ret < ld )
            {
                ret = ld;
            }
            
            if( ret < rd )
            {
                ret = rd;
            }
        }
    }
    
    return ret;
}

BTree* BTree_Create() // O(1)
{
    TBTree* ret = (TBTree*)malloc(sizeof(TBTree));
    
    if( ret != NULL )
    {
        ret->count = 0;
        ret->root = NULL;
    }
    
    return ret;
}

void BTree_Destroy(BTree* tree) // O(1)
{
    free(tree);
}

void BTree_Clear(BTree* tree) // O(1)
{
    TBTree* btree = (TBTree*)tree;
    
    if( btree != NULL )
    {
        btree->count = 0;
        btree->root = NULL;
    }
}

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    int ret = (btree != NULL) && (node != NULL) && ((flag == BT_LEFT) || (flag == BT_RIGHT));
    int bit = 0;
    
    if( ret )
    {
        BTreeNode* parent = NULL;
        BTreeNode* current = btree->root;
        
        node->left = NULL;
        node->right = NULL;
        
        while( (count > 0) && (current != NULL) )
        {
            bit = pos & 1;
            pos = pos >> 1;
            
            parent = current;
            
            if( bit == BT_LEFT )
            {
                current = current->left;
            }
            else if( bit == BT_RIGHT )
            {
                current = current->right;
            }
            
            count--;
        }
        
        if( flag == BT_LEFT )
        {
            node->left = current;
        }
        else if( flag == BT_RIGHT )
        {
            node->right = current;
        }
        
        if( parent != NULL )
        {
            if( bit == BT_LEFT )
            {
                parent->left = node;
            }
            else if( bit == BT_RIGHT )
            {
                parent->right = node;
            }
        }
        else
        {
            btree->root = node;
        }
        
        btree->count++;
    }
    
    return ret;
}

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    BTreeNode* ret = NULL;
    int bit = 0;
    
    if( btree != NULL )
    {
        BTreeNode* parent = NULL;
        BTreeNode* current = btree->root;
        
        while( (count > 0) && (current != NULL) )
        {
            bit = pos & 1;
            pos = pos >> 1;
            
            parent = current;
            
            if( bit == BT_LEFT )
            {
                current = current->left;
            }
            else if( bit == BT_RIGHT )
            {
                current = current->right;
            }
            
            count--;
        }
        
        if( parent != NULL )
        {
            if( bit == BT_LEFT )
            {
                parent->left = NULL;
            }
            else if( bit == BT_RIGHT )
            {
                parent->right = NULL;
            }
        }
        else
        {
            btree->root = NULL;
        }
        
        ret = current;
        
        btree->count = btree->count - recursive_count(ret);
    }
    
    return ret;
}

BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    BTreeNode* ret = NULL;
    int bit = 0;
    
    if( btree != NULL )
    {
        BTreeNode* current = btree->root;
        
        while( (count > 0) && (current != NULL) )
        {
            bit = pos & 1;
            pos = pos >> 1;
            
            if( bit == BT_LEFT )
            {
                current = current->left;
            }
            else if( bit == BT_RIGHT )
            {
                current = current->right;
            }
            
            count--;
        }
        
        ret = current;
    }
    
    return ret;
}

BTreeNode* BTree_Root(BTree* tree) // O(1)
{
    TBTree* btree = (TBTree*)tree;
    BTreeNode* ret = NULL;
    
    if( btree != NULL )
    {
        ret = btree->root;
    }
    
    return ret;
}

int BTree_Height(BTree* tree) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    int ret = 0;
    
    if( btree != NULL )
    {
        ret = recursive_height(btree->root);
    }
    
    return ret;
}

int BTree_Count(BTree* tree) // O(1)
{
    TBTree* btree = (TBTree*)tree;
    int ret = 0;
    
    if( btree != NULL )
    {
        ret = btree->count;
    }
    
    return ret;
}

int BTree_Degree(BTree* tree) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    int ret = 0;
    
    if( btree != NULL )
    {
        ret = recursive_degree(btree->root);
    }
    
    return ret;
}

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div) // O(n)
{
    TBTree* btree = (TBTree*)tree;
    
    if( btree != NULL )
    {
        recursive_display(btree->root, pFunc, 0, gap, div);
    }
}

时间: 2024-10-18 03:32:22

创建二叉树实例的相关文章

线索二叉树实例(前序创建,中序遍历)--2018.5.15

#include <stdio.h> #include <stdlib.h> #define ERROR 0 #define OK 1 typedef enum{Link, Thread} PointerTag; //link = 0表示指向左右孩子指针 //Thread = 1表示指向前驱或后继的线索 typedef struct BitNode { char data; //结点数据 struct BitNode *lchild; //左右孩子指针 struct BitNode

创建二叉树、创建链表等

方法一: 1 #include <iostream>//创建二叉树,要用二级指针 2 3 using namespace std; 4 5 typedef struct TreeNode 6 { 7 char data; 8 struct TreeNode *left; 9 struct TreeNode *right; 10 }BiTree; 11 12 void creatBitree(BiTree **T) 13 { 14 char ch; 15 cin >> ch; 16

域初始化、静态块及构造方法等在创建类实例时的执行顺序(转载)

在<Core java 2: volumn 1, Edition 5>一书的第四章“对象与类”中讲到域赋值语句.实例块.静态块及构造方法等在创建类实例时的执行顺序,中文译本有些处翻译的不贴切,而英文原书中也有一处错误.本文通过一个小程序来说明类实例构造过程中的语句执行顺序. 程序如下: public class Teststaticblock { public Teststaticblock() { this("second"); System.out.println(&q

ORACLE 10g创建单实例 ASM

1.启动CSS服务 bash-3.2# /export/home/oracle/app/ora10g/product/10gr2/bin/localconfig add 2.创建初始化实例文件 [[email protected] ~/app/ora10g/product/10gr2/dbs 12:33:48]$cat asmpfile.ora instance_type=asm processes=100 3.修改磁盘归属 [[email protected] dev]# ll /dev/sd

eclipse创建servlet实例

今天花了一段时间利用eclipse创建servlet实例,但是一直没法通过浏览器访问,奔溃,后来发现一个问题,用dynamic web 工程部署到tomcat之后,并没有对应在工程中创建的类,也就是说没有classes文件夹,然后通过在WebContent目录下的WEB-INF下建立classes文件夹,并创建对应的包和java类,这些类会同步到src文件夹下,除此之外,配置了web.xml文件,最终run on server,就可以通过浏览器访问servlet了,具体程序如下. 代码 提取码:

python使用 minidom创建xml实例

python创建xml实例 模仿下面的xml文件,使用python脚本进行创建. <?xml version='1.0'?> <database> <user username="user" fromAddress="[email protected]" fullName="John Q. User" password="pass"> <subscription host="

使用反射创建Bean、Spring中是如何根据类名配置创建Bean实例、Java提供了Class类获取类别的字段和方法,包括构造方法

Java提供了Class类,可以通过编程方式获取类别的字段和方法,包括构造方法 获取Class类实例的方法: 类名.class 实例名.getClass() Class.forName(className) public class RefTest { @Test public void testRef(){ //Class cls = RefTest.class; //Class.forName("com.jboa.service.RefTest"); //new RefTest()

先序遍历创建二叉树,对二叉树统计叶子节点个数和统计深度(创建二叉树时#代表空树,序列不能有误)

#include "stdio.h" #include "string.h" #include "malloc.h" #define NULL 0 #define MAXSIZE 30 typedef struct BiTNode      //定义二叉树数据结构 { char data; struct BiTNode *lchild,*rchild; } BiTNode; void preCreate(BiTNode *& T)   /

层次创建二叉树

第一种: 主要是利用 树结点类型的数组.二叉树结点序号之间的关系 来创建: 父结点序号为 i 则,左儿子结点序号为 2*i ,右儿子序号为 2*i+1. //用层次遍历的方法来创建二叉树 #include <iostream> #include <queue> using namespace std; //二叉链表的结构类型定义 const int maxsize=1024; typedef char datatype; typedef struct node { datatype