了解一下大数据

项目开发针对的主要是企业家的应用,所以数据量算不上大数据,但是最近大数据在互联网行业的使用,作为一名程序员,应该学习新技术吗?但是学习他仅仅是为了借鉴一下大数据的处理思想,实现的过程,针对的场景,以便在我们的项目开发中借鉴一些思想,提高开发水平。

======================================

hadoop生态系统:

CPU:hadoop的Mad-Reduce------------------------并行编程的模型机制

内存:HBase-基于列的NoSQL数据库------------------Key-Value的基于HashTable的快速查询机制

存储:Hadfs的分布式文件系统--------------------------存储大量数据

======================

Habse:nosql数据库

Hive:nosql的数据仓库

hadfs:分布式文件系统

sqoop:etl的工具(数据抽取工作-做etl的过程)

zookeeper:时间同步工具------注意网络之间协调本质就是时间服务。

======================

如果学习的话,这就是一个应该学习的技术.

部分来自:http://blog.csdn.net/woshiwanxin102213/article/details/19688393

时间: 2024-10-12 17:58:49

了解一下大数据的相关文章

关于MATLAB处理大数据坐标文件2017620

暑假已至,接下来组内成员将会各回各家,各找各妈,这肯定是对本次大数据比赛是很不利的. 接下来我会把任务分配给组员,当然任务会比起初的时候轻一点,因为我认为本次比赛的目的并不是我要求组员做什么,而是我的组员要求自己做什么! 我们现在主要接触的两门语言: MATLAB语言在数据处理方面很牛,它的画图功能也是杠杠的,尤其是3D画图 Python语言是一门近几年很火的语言,学好它对自己肯定只有益处,它的出生很晚,但是短短十多年,它已经稳居计算机语言前三名.尤其是现在的大数据时代,它的代码不仅简单易懂,而

【IT十八掌大数据】学习笔记

hive简介: -------------------- 0.big data的特点:4 Volumn variety velocity value 1.介绍 数据仓库    //online analyze process,在线分析处理. 用来查询和管理位于分布式存储设备上的大型数据集. Hive提供了一种类SQL语言--HiveQL(HQL)进行查询分析. HiveQL可进行插件式扩展. 擅长处理结构化数据.非结构化的数据没办法创建对应的模式. 位于hadoop之上,重点在于对大数据进行分析

Pandas中如何处理大数据?

近期的工作和Hive SQL打交道比较多,偶尔遇到一些SQL不好解决的问题,会将文件下载下来用pandas来处理,由于数据量比较大,因此有一些相关的经验可以和大家分享,希望对大家学习pandas有所帮助吧. 大文本数据的读写 有时候我们会拿到一些很大的文本文件,完整读入内存,读入的过程会很慢,甚至可能无法读入内存,或者可以读入内存,但是没法进行进一步的计算,这个时候如果我们不是要进行很复杂的运算,可以使用read_csv提供的chunksize或者iterator参数,来部分读入文件,处理完之后

一站式大数据敏捷分析平台

OpenFEA是一站式大数据敏捷分析系统,融合了内存计算.集群运算.机器学习.交互分析.可视化分析等技术,涵盖数据收集.数据探索.构建模型.模型发布等功能,分析性能卓越,使用简便,无需复杂编程即可快速实现大数据分析,助力数据分析师激扬数据,塑造业务标杆.          数据收集         OpenFEA能够融合更多类型的数据来进行运算,支持关系型数据源. Hadoop数据源.数据文件.第三方数据源. 支持数据源与接口/格式的双向自定义机制.表示各种复杂结构或LOAD和STORE各类数据

SPARK大数据计算BUG处理:

大数据计算BUG处理: 程序修改前资源情况: Driver : 1台 Worker : 2台 程序提交申请内存资源 : 1G内存 内存分配情况 : 1. 20%用于程序运行 2. 20%用于Shuffle 3. 60%用于RDD缓存 单条TweetBean大小 : 3k 1. 内存溢出 原因:因为程序会把所有的TweetBean查询出来并且合并(union),该操作在内存中进行.则某个campaign数据量较大时,如500W数据,则500W*10k=50G,超出内存限制. 解决方法: 先按数据量

联合国“全球脉动”计划 《大数据开发:机遇与挑战》

联合国"全球脉动"计划发布<大数据开发:机遇与挑战>2012 年 5 月 29 日,联合国"全球脉动"( Global Pulse)计划发布<大数据开发:机遇与挑战>报告,阐述了各国特别是发展中国家在运用大数据促进社会发展方面所面临的历史机遇和挑战,并为正确运用大数据提出了策略建议.1. 引言技术创新和数字设备的普及带来了"数据的产业革命".对日益扩大的数字数据的分析将揭示关于集体行为的潜在联系,并有可能改进决策方式.大数

大数据vs计算机

大数据有两个方向,一个是偏计算机的,另一个是偏经济的.你学过Java,所以你可以偏将计算机 基础1. 读书<Introduction to Data Mining>,这本书很浅显易懂,没有复杂高深的公式,很合适入门的人.另外可以用这本书做参考<Data Mining : Concepts and Techniques>.第二本比较厚,也多了一些数据仓库方面的知识.如果对算法比较喜欢,可以再阅读<Introduction to Machine Learning>.当然,还

SparkRDD解密(DT大数据梦工厂)

第一阶段,彻底精通Spark 第二阶段,从0起步,操作项目 Hadoop是大数据的基础设施,存储等等 Spark是计算核心所在 1.RDD:基于工作集的应用抽象 2.RDD内幕解密 3.RDD思考 不掌握RDD的人,不可能成为Spark的高手 绝对精通RDD,解决问题的能力大大提高 各种框架底层封装的都是RDD,RDD提供了通用框架 RDD是Spark的通用抽象基石 顶级SPark高手, 1.能解决问题.性能调优: 2.Spark高手拿Spark过来就是修改的 ==========基于工作集的应

底层战详解使用Java开发Spark程序(DT大数据梦工厂)

Scala开发Spark很多,为什么还要用Java开发原因:1.一般Spark作为数据处理引擎,一般会跟IT其它系统配合,现在业界里面处于霸主地位的是Java,有利于团队的组建,易于移交:2.Scala学习角度讲,比Java难.找Scala的高手比Java难,项目的维护和二次开发比较困难:3.很多人员有Java的基础,确保对Scala不是很熟悉的人可以编写课程中的案例预测:2016年Spark取代Map Reduce,拯救HadoopHadoop+Spark = A winning combat

DT大数据 梦工厂57讲

今日[DT大数据梦工厂视频]<第57讲:Scala中Dependency Injection实战详解> 土豆:http://www.tudou.com/programs/view/5LnLNDBKvi8/ 百度网盘:http://pan.baidu.com/s/1c0no8yk (DT大数据梦工厂scala的所有视频.PPT和代码在百度云盘的链接地址:http://pan.baidu.com/share/home?uk=4013289088#category/type=0&qq-pf-