matlab Newton method

% Matlab script to illustrate Newton‘s method
% to solve a nonlinear equation

% this particular script finds the square root of a number M
% (input by the user)

% note that the function we are trying to zero is f(x) = x^2 - M.
% its derivative is f‘(x) = 2*x.
% these functions are hard-coded in the script.

format long

% get user input
M = input(‘Please enter the number whose square root you want: ‘)
x0 = input(‘Please enter starting guess: ‘)

% iteration counter
k = 1
% compute first Newton iterate to enter loop
x = x0 - (x0^2-M)/(2*x0)
disp(‘Hit return to continue‘)
pause 

while abs(x-x0) > eps*abs(x),
    % reset guess to old iterate
    x0 = x;
    % increment iteration counter
    k = k + 1
    % compute and display Newton iterate
    x = x0 - (x0^2-M)/(2*x0)
    disp(‘Hit return to continue‘)
    pause
end
时间: 2024-10-18 14:43:57

matlab Newton method的相关文章

Matlab Newton‘s method

定义函数 function y=f(x) y=f(x).%函数f(x)的表达式 end function z=h(x) z=h(x).%函数h(x)的表达式 end 主程序 x=X;%迭代初值 i=0;%迭代次数计算 while i<= 100%迭代次数 x0=X-f(X)/h(X);%牛顿迭代格式 if abs(x0-X)>0.01:%收敛推断 X=x0; else break end i=i+1; end fprintf('\n%s%.4f\t%s%d','X='.X.'i='.i) %产

matlab secant method

% Matlab script to illustrate the secant method % to solve a nonlinear equation % this particular script finds the square root of a number M % (input by the user) % note that the function we are trying to zero is f(x) = x^2 - M. % this function is ha

Newton‘ method 的优缺点

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzE1Mjg5NQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" > 图片来自百度

Supervised Descent Method Face Alignment 代码下载 和 算法研究 之一

1 主要内容: Supervised Descent Method and its Applications to Face Alignment算法研究. 2代码彩蛋:我问了好久,xxiong好心人发给我的,希望能对你们学习有帮助: 低调下载: http://humansensing.cs.cmu.edu/xxiong/mexintraface1.3.1%28release%29.zip. 注意杜绝一切商业用途,如果需要商业用途,请联系作者本人!! 3本文分为几个部分: (1)解决什么问题 (2

Levenberg-Marquardt迭代(LM算法)-改进Newton法

                  1.前言                                    a.对于工程问题,一般描述为:从一些测量值(观测量)x 中估计参数 p?即x = f(p),                                 其中,x为测量值构成的向量,参数p为待求量,为了让模型能适应一般场景,这里p也为向量.                                 这是一个函数求解问题,可以使用Guass-Newton法进行求解,LM算法

&lt;Numerical Analysis&gt;笔记

2ed, by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is less than 0.5 × 10$^{−p}$ .-P29Bisection Method的优点是计算次数(step)是确定的(interval<精度).后面介绍的算法的interval是不确定的, 所以什么时候结束计算呢?不知道.所以定义“stopping criteria’’来决定什么时候结束计

.NET数据挖掘与机器学习开源框架

1.    数据挖掘与机器学习开源框架 1.1 框架概述 1.1.1 AForge.NET AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域.这个框架由一系列的类库组成.主要包括有: AForge.Imaging -- 一些日常的图像处理和过滤器 AForge.Vision -- 计算机视觉应用类库 AForge.Neuro -- 神经网络计算库AForge.Genetic -进化算法

西瓜书第三章 线性模型

读书笔记 周志华老师的<机器学习> 因为边看边记,所以写在随笔里,如果涉及版权问题,请您联系我立马删除,[email protected] 3.1 基本形式 给定d个属性描述的示例 x = (x_1;x_2;...;x_3), 其中x_i是X在第i个属性上的取值,线性模型视图学得一个通过属性的线性组合来进行预测的函数,即 f(x) = w_1*x_1 + w_2*x_2 + ... + w_d*x_d + b, 向量形式 其中 w = (w_1;w_2;...;w_d). w直观表达了各属性在

优化算法——拟牛顿法之DFP算法

一.牛顿法 在博文"优化算法--牛顿法(Newton Method)"中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快.在牛顿法中使用到了函数的二阶导数的信息,对于函数,其中表示向量.在牛顿法的求解过程中,首先是将函数在处展开,展开式为: 其中,,表示的是目标函数在的梯度,是一个向量.,表示的是目标函数在处的Hesse矩阵.省略掉最后面的高阶无穷小项,即为: 上式两边对求导,即为: 在基本牛顿法中,取得最值的点处的导数值为,即上式左侧为.则: 求出其中的: