非负矩阵分解(1):准则函数及KL散度

作者:桂。

时间:2017-04-06  12:29:26

链接:http://www.cnblogs.com/xingshansi/p/6672908.html

声明:欢迎被转载,不过记得注明出处哦~



前言

之前在梳理最小二乘的时候,矩阵方程有一类可以利用非负矩阵分解(Non-negative matrix factorization, NMF)的方法求解,经常见到别人提起这个算法,打算对此梳理一下。优化问题求解,最基本的是问题描述与准则函数的定义,紧接着才涉及准则函数的求解问题,本文为NMF系列第一篇,主要梳理:

  1)矩阵方程基本问题;

  2)准则函数定义;

内容为自己的学习总结,其中多有借鉴他人的地方,最后一并给出链接。

一、矩阵方程基本问题

本段描述NMF对应的基本问题。

许多问题都可以建模成矩阵方程:

${\bf{AS}} = {\bf{X}}$

其中根据向量和矩阵的不同,矩阵方程的求解主要分为以下三类问题:

1)超定矩阵方程;m>n,$\bf{X}$和$\bf{A}$均已知,其中之一或二者可能存在观测误差、干扰;

2)盲矩阵方程:仅向量$\bf{X}$已知,矩阵$\bf{A}$未知;

3)欠定稀疏矩阵方程:m<n,$\bf{X}$和$\bf{A}$均已知.

每一类问题,都有对应的方法:如对于盲矩阵方程,由于只有观测向量$\bf{X}$,因此引入误差的时候只能假设观测向量存在误差,而不会像最小二乘那样分为普通最小二乘、数据最小二乘、总体最小二乘。给出矩阵方程及对应求解的示意图:

其实${\bf{AS}} = {\bf{X}}$仅仅是一个线性表达,求解本身没有非负的限制。但对于现实中很多应用:比如一张图片,可以认为它由鼻子、眼睛、眉毛...等等拼成,每一个成分对应一些像素值,而这些理论上都应该是非负的,因此在一些矩阵求解问题中,我们希望加入非负的限制。本系列文章主要针对其中的:盲矩阵方程求解——非负矩阵分解算法

二、准则函数定义

这里只分析最常用的两类准则函数,对于广义AB-散度不作讨论。假设非负矩阵${\bf{X}}$可以分解成:

${\bf{AS}} = {\bf{X}}$

由于观测数据${\bf{X}}$难免带来误差,因此有:

${\bf{X}} = {\bf{AS}}  + \bf{N}$

针对误差最小化,引入准则函数:

下面分析准则函数$D\left( {{\bf{X}}|{\bf{AS}}} \right)$.

  A-平方欧几里得(Euclidean)距离

当假设误差服从正态分布时,此时的最大似然估计与最小二乘等价,此时对应的准则函数为平方Euclidean距离,有时为了求导方便常添加比例系数1/2:

  B-Kullback-Leibler(KL)散度

1-KL定义

首先给出KL散度定义:

KL散度与Euclidean距离不同,是非对称的。

2-KL的含义

KL不像Euclidean那么直观,这就有了一个疑问?这么古怪的家伙是从哪冒出来的?

下面一点点理解。

从图中很容易求解$(x_0,y_0)$处的切线方程,其实$x$如果接近$x_0$,这就是一阶Taylor近似,写成更一般的形式:

一阶Taylor逼近的误差则定义为:

推广开来这就是Bregman距离

令$\phi $:为定义在闭合凸集的一连续可微分凸函数。与函数$\phi $对应的两个向量:之间的Bregman距离记作:,定义为:

如果$\phi $取凸函数:

其实如果$x_i$看作是概率密度,这个就是熵的表达式啊,也就是这里函数调用熵的形式。此时,Bregman距离对应的就是Kullback-Leibler散度,也叫信息散度、信息增益、相对熵、I散度。

从而可以得到:

对号入座,同样可以得出准则函数:

这样一来,KL散度的实际意义就比较明显了它表达了不同信息熵一阶Taylor的近似,如果细究,二阶、三阶....Taylor近似同样可以得出

3-KL对应分布

Euclidean距离对应:误差服从正态分布,KL散度是不是也该对应某种分布?答案是当然——泊松分布。泊松分布前面有文章分析过。泊松分布就常见的计数过程,描述的是一段时间事件发生的次数,与它关联较大的一个是二项分布,一个是指数分布。不过这里分析完之后,是不是该多出一个疑问:泊松分布与信息熵有何关系?下面说说泊松分布为什么可以对应KL散度。

给出泊松分布的定义:

从而对于两个分布:

概率相比并取对数:

已经有点KL散度的味道了,因为$x$是随机数,所以需要进行基于统计意义的均值计算:

KL散度就这么推导出来了。

参考:

张贤达《矩阵分析与应用》

时间: 2024-12-25 12:30:35

非负矩阵分解(1):准则函数及KL散度的相关文章

非负矩阵分解(4):NMF算法和聚类算法的联系与区别

作者:桂. 时间:2017-04-14   06:22:26 链接:http://www.cnblogs.com/xingshansi/p/6685811.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 之前梳理了一下非负矩阵分解(Nonnegative matrix factorization, NMF),主要有: 1)准则函数及KL散度 2)NMF算法推导与实现 3)拉格朗日乘子法求解NMF(将含限定NMF的求解 一般化) 谱聚类可以参考之前的文章: 1)拉普拉斯矩阵(Laplace

非负矩阵分解(3):拉格朗日乘子法求解

作者:桂. 时间:2017-04-07  07:11:54 链接:http://www.cnblogs.com/xingshansi/p/6679325.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 最近发这类文章,动不动就被管理员从首页摘除,如果你觉得这个文章还说得过去,麻烦帮忙点个赞吧,这样移除的概率小一些.... 本文为非负矩阵分解系列第三篇,在第二篇中介绍了不同准则下乘法算法的推导及代码实现,这里不免有一个疑问:明明是一个约束的优化问题,虽然乘法算法巧妙地将其变为一个无约束优化

融合非负矩阵分解和图全变分的歌曲推荐算法

摘要: Kirell Benzi, Vassilis Kalofolias, Xavier Bresson and Pierre Vandergheynst Signal Processing Laboratory 2 (LTS2), Swiss Federal Institute of Technology (EPFL) Kirell Benzi, Vassilis Kalofolias, Xavier Bresson and Pierre Vandergheynst Signal Proce

推荐算法——非负矩阵分解(NMF)

一.矩阵分解回想 在博文推荐算法--基于矩阵分解的推荐算法中,提到了将用户-商品矩阵进行分解.从而实现对未打分项进行打分. 矩阵分解是指将一个矩阵分解成两个或者多个矩阵的乘积.对于上述的用户-商品矩阵(评分矩阵),记为Vm×n.能够将其分解成两个或者多个矩阵的乘积,如果分解成两个矩阵Wm×k和Hk×n.我们要使得矩阵Wm×k和Hk×n的乘积能够还原原始的矩阵Vm×n: Vm×n≈Wm×k×Hk×n=V^m×n 当中,矩阵Wm×k表示的是m个用户与k个主题之间的关系,而矩阵Hk×n表示的是k个主题

TensorFlow的初次使用+Python画3D图和计算KL散度

ython计算KL散度import numpy as np import scipy.stats x = [np.random.randint(1,11) for i in range(10)] print(x) print(np.sum(x)) px = x/np.sum(x)#归一化 print(px) y = [np.random.randint(1, 11) for i in range(10)] print(y) print(np.sum(y)) py = y / np.sum(y)#

NMF非负矩阵分解初探

NMF非负矩阵分解初探 简介 数据可以表示为一个矩阵 $V$,列 $v_n$ 是采样点而行代表特征features.我们想把这个矩阵$V$因式分解为两个未知的矩阵 $W$ 和 $H$ $$ V \approx \hat{V} \equiv WH$$ 这里面 $W$ 是一个经常性出现的patterns的字典(比如音乐中的鼓点),而 $H$ 中的每一列 $h_n$ 表示每一个采样点 $v_n$ 中估测存在的patterns.我们可以把 $W$ 称为字典(dictionary)而 $H$ 成为激活矩阵

深度学习中交叉熵和KL散度和最大似然估计之间的关系

机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l

分层数据表示模型--多层非负矩阵分解

1 简介 为了理解复杂的数据,人们提出了分层特征提取概念.著名的算法之一是2006年Hinton提出的Deep Belief Network(DBN).随着训练深层结构的成功,人们又提出了许多深度学习的变体.尽管这些多层算法产生了多层方法在特征提取和提供对复杂问题的有效方法,但并没有告诉我们通过多层结构学到的特征之间的关系. 本文我们提出了一个分层数据表示模型,分多层的非负矩阵分解.我们提供了NMF算法的一个变体,nsNMF来进行分层学习.这里,我们通过在数据集上学习层之间的关系直观的展示特征分

NMF.非负矩阵分解.--.原理与应用

1.原理 发现写关于非负矩阵的博文还是蛮多的,还是以自己的角度总结一下自己的最近看的若干东西以及对非负矩阵分解有用的一些资料链接.NMF,全称为non-negative matrix factorization,中文呢为"非负矩阵分解". NMF的思想:V=WH(W权重矩阵.H特征矩阵.V原矩阵),通过计算从原矩阵提取权重和特征两个不同的矩阵出来.属于一个无监督学习的算法,其中限制条件就是W和H中的所有元素都要大于0. 写得有点匮竭难懂,看不懂建议去看看原论文,在<NMF引用&g