并发包独占锁ReentrantLock与读写锁ReentrantReadWriteLock

两个锁都是依赖AQS实现的,方法基本是Sync的封装,主要看Sync的设计实现,

一、可重入独占锁ReentrantLock

1.静态内部抽象类Sync

    //继承AQS
  abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        /**
         * 延迟到子类实现(公平锁与非公平锁)
         */
        abstract void lock();

        /**
         * 尝试获取非公平锁
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                //计数器state == 0:锁未被持有,计数器原子性自增并设置当前线程为持有者
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                //计数器state != 0:锁被当前线程为持有者,计数器state增加(可重入锁)
                int nextc = c + acquires;
                if (nextc < 0) // 可重入次数溢出跑错
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

        protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                //当前线程不是锁的持有者抛出异常
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                //计数器state == 0:释放锁,设置持有者为null
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

        protected final boolean isHeldExclusively() {
            //判断当前线程是否为锁的持有者
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

        final ConditionObject newCondition() {
            //创建条件变量
            return new ConditionObject();
        }

        // Methods relayed from outer class

        final Thread getOwner() {
            //获取当前锁的持有线程
            return getState() == 0 ? null : getExclusiveOwnerThread();
        }

        final int getHoldCount() {
            //当前线程为锁的持有者返回计数器state值,不是锁的持有者返回0
            return isHeldExclusively() ? getState() : 0;
        }

        final boolean isLocked() {
            //锁是否被持有
            return getState() != 0;
        }

        /**
         * 创建反序列化实例,重置计数器值,锁状态初始化
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            s.defaultReadObject();
            setState(0); // reset to unlocked state
        }
    }

继承Sync的非公平锁NonfairSync与公平锁FairSync

    /**
     * 非公平锁
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() {
            if (compareAndSetState(0, 1))
                //当前计数器state == 0即锁未被持有时,state自增且直接设置当前线程为锁持有者(未检查阻塞队列,破坏FIFO)
                setExclusiveOwnerThread(Thread.currentThread());
            else
                //当前计数器state != 0即锁被持有时,调用AQS的独占模式获取资源,会调用下面的tryAcquire尝试获取锁
                acquire(1);
        }

        //acquire方法中tryAcquire实现,尝试获取锁,若锁未被持有,直接获取锁,不入阻塞队列,破坏FIFO
        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
    }

    /**
     * 公平锁
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() {
            acquire(1);
        }

        /**
         * 公平锁尝试获取资源,锁未被持有时,先队列,后当前线程
         */
        protected final boolean tryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                //计数器state == 0,锁未被持有
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                    //AQS阻塞队列为空或者当前线程是阻塞队列头结点的后继节点,直接设置当前线程为锁的持有者,计数器state自增
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                //计数器state != 0.锁被持有且持有者是当前线程,计数器state自增
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
    }

2.ReentrantLock的变量与构造方法

    private final Sync sync;//实际的锁对象

    public ReentrantLock() {
        sync = new NonfairSync();//无参构造函数默认非公平锁 == ReentrantLock(false)
    }

    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();//可指定公平锁还是非公平锁
    }

3.ReentrantLock的方法:都是Sync的封装

    //尝试获取锁
    public void lock() {
        sync.lock();
    }

    //尝试获取锁,不忽略中断,中断抛错
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }

    //尝试获取锁
    public boolean tryLock() {
        return sync.nonfairTryAcquire(1);
    }

    //尝试一定时间内获取锁
    public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }

    //释放锁
    public void unlock() {
        sync.release(1);
    }

    //创建条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }

    //返回锁的重入数,不是锁持有者则返回0
    public int getHoldCount() {
        return sync.getHoldCount();
    }

    //判断当前线程是否为锁的持有者
    public boolean isHeldByCurrentThread() {
        return sync.isHeldExclusively();
    }

    //判断锁是否被持有
    public boolean isLocked() {
        return sync.isLocked();
    }

    //判断是否公平锁
    public final boolean isFair() {
        return sync instanceof FairSync;
    }

    //获取锁的持有者
    protected Thread getOwner() {
        return sync.getOwner();
    }

    //判断AQS队列是否为空
    public final boolean hasQueuedThreads() {
        return sync.hasQueuedThreads();
    }

    //
    public final boolean hasQueuedThread(Thread thread) {
        return sync.isQueued(thread);
    }

    public final int getQueueLength() {
        return sync.getQueueLength();
    }

    protected Collection<Thread> getQueuedThreads() {
        return sync.getQueuedThreads();
    }

    public boolean hasWaiters(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    public int getWaitQueueLength(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

    protected Collection<Thread> getWaitingThreads(Condition condition) {
        if (condition == null)
            throw new NullPointerException();
        if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
            throw new IllegalArgumentException("not owner");
        return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
    }

原文地址:https://www.cnblogs.com/wqff-biubiu/p/12228966.html

时间: 2024-10-11 07:38:23

并发包独占锁ReentrantLock与读写锁ReentrantReadWriteLock的相关文章

架构师养成记--14.重入锁ReentrantLock 和 读写锁 ReentrantReadWriteLock

ReentrantLock 有嗅探锁定和多路分支等功能,其实就是synchronized,wait,notify的升级. this锁定当前对象不方便,于是就有了用new Object()来作为锁的解决方案,后面jdk干脆就提供了一个Lock类. 伪代码: Lock lock = new ReentrantLock();//新建一个lock Condition condition = lock.newCondition();//获取条件 method1(){ try{ lock.lock(); 代

多线程并发编程之显示锁ReentrantLock和读写锁

在Java5.0之前,只有synchronized(内置锁)和volatile. Java5.0后引入了显示锁ReentrantLock. ReentrantLock概况 ReentrantLock是可重入的锁,它不同于内置锁, 它在每次使用都需要显示的加锁和解锁, 而且提供了更高级的特性:公平锁, 定时锁, 有条件锁, 可轮询锁, 可中断锁. 可以有效避免死锁的活跃性问题.ReentrantLock实现了 Lock接口: public interface Lock { //阻塞直到获得锁或者中

深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)[转]

从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一直在强调这个特点.显然这个特点在一定程度上面减低了吞吐量,实际上独占锁是一种保守的锁策略,在这种情况下任何“读/读”,“写/读”,“写/写”操作都不能同时发生.但是同样需要强调的一个概念是,锁是有一定的开销的,当并发比较大的时候,锁的开销就比较客观了.所以如果可能的话就尽量少用锁,非要用锁的话就尝试看能

深入浅出 Java Concurrency (13): 锁机制 part 8 读写锁 (ReentrantReadWriteLock) (1)

从这一节开始介绍锁里面的最后一个工具:读写锁(ReadWriteLock). ReentrantLock 实现了标准的互斥操作,也就是一次只能有一个线程持有锁,也即所谓独占锁的概念.前面的章节中一直在强调这个特点.显然这个特点在一定程度上面减低了吞吐量,实际上独占锁是一种保守的锁策略,在这种情况下任何"读/读","写/读","写/写"操作都不能同时发生.但是同样需要强调的一个概念是,锁是有一定的开销的,当并发比较大的时候,锁的开销就比较客观了.所

可重入的独占锁——ReentrantLock源码分析

ReentrantLock面试题分析 1.ReentrantLock是怎么实现的? 2.ReentrantLock的公平锁和非公平锁是如何实现的? 1.ReentrantLock类图结构 从类图我们可以直观地了解到,ReentrantLock最终还是使用AQS来实现地,并且根据参数来决定其内部是一个公平??还是非公平锁??,默认是非公平锁??. public ReentrantLock() { sync = new NonfairSync(); } public ReentrantLock(bo

读写锁 ReentrantReadWriteLock

一.读写锁 ReadWriteLock概念特点读写锁维护了一对相关的锁,一个用于只读操作,一个用于写入操作.只要没有writer,读取锁可以由多个reader线程同时保持.写入锁是独占的. 互斥锁[ReetrantLock]一次只允许一个线程访问共享数据,哪怕进行的是只读操作:读写锁[ReadWriteLock]允许对共享数据进行更高级别的并发访问:对于写操作,一次只有一个线程(write线程)可以修改共享数据,对于读操作,允许任意数量的线程同时进行读取.writer可以获取读取锁,但reade

被面试官吊打系列之JUC之 可重入读写锁ReentrantReadWriteLock 之 源码详尽分析

可重入读写锁 ReentrantReadWriteLock 其实基本上模拟了文件的读写锁操作.ReentrantReadWriteLock 和ReentrantLock 的差别还是蛮大的: 但是也有很多的相似之处: ReentrantReadWriteLock 的 writerLock 其实就是相当于ReentrantLock,但是它提供更多的细腻的控制:理解什么是读锁.写锁非常重要,虽然实际工作中区分读写锁这样的细分使用场景比较少. ReentrantReadWriteLock 把锁进行了细化

[图解Java]读写锁ReentrantReadWriteLock

图解ReentrantReadWriteLock 如果之前使用过读写锁, 那么可以直接看本篇文章. 如果之前未使用过, 那么请配合我的另一篇文章一起看:[源码分析]读写锁ReentrantReadWriteLock 0. demo 我先给出一个demo, 这样大家就可以根据我给的这段代码, 边调试边看源码了. 还是那句话: 注意"My" , 我把ReentrantReadWriteLock类 改名为了 "MyReentrantReadWriteLock"类 , &q

深入浅出 Java Concurrency (14): 锁机制 part 9 读写锁 (ReentrantReadWriteLock) (2)[转]

这一节主要是谈谈读写锁的实现. 上一节中提到,ReadWriteLock看起来有两个锁:readLock/writeLock.如果真的是两个锁的话,它们之间又是如何相互影响的呢? 事实上在ReentrantReadWriteLock里锁的实现是靠java.util.concurrent.locks.ReentrantReadWriteLock.Sync完成的.这个类看起来比较眼熟,实际上它是AQS的一个子类,这中类似的结构在CountDownLatch.ReentrantLock.Semapho