吴裕雄--天生自然python机器学习:支持向量机SVM

基于最大间隔分隔数据

import matplotlib
import matplotlib.pyplot as plt

from numpy import *

xcord0 = []
ycord0 = []
xcord1 = []
ycord1 = []
markers =[]
colors =[]
fr = open(‘F:\\machinelearninginaction\\Ch06\\testSet.txt‘)#this file was generated by 2normalGen.py
for line in fr.readlines():
    lineSplit = line.strip().split(‘\t‘)
    xPt = float(lineSplit[0])
    yPt = float(lineSplit[1])
    label = int(lineSplit[2])
    if (label == 0):
        xcord0.append(xPt)
        ycord0.append(yPt)
    else:
        xcord1.append(xPt)
        ycord1.append(yPt)

fr.close()
fig = plt.figure()
ax = fig.add_subplot(221)
xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = []
for i in range(300):
    [x,y] = random.uniform(0,1,2)
    if ((x > 0.5) and (y < 0.5)) or ((x < 0.5) and (y > 0.5)):
        xcord0.append(x); ycord0.append(y)
    else:
        xcord1.append(x); ycord1.append(y)
ax.scatter(xcord0,ycord0, marker=‘s‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.title(‘A‘)
ax = fig.add_subplot(222)
xcord0 = random.standard_normal(150); ycord0 = random.standard_normal(150)
xcord1 = random.standard_normal(150)+2.0; ycord1 = random.standard_normal(150)+2.0
ax.scatter(xcord0,ycord0, marker=‘s‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.title(‘B‘)
ax = fig.add_subplot(223)
xcord0 = []
ycord0 = []
xcord1 = []
ycord1 = []
for i in range(300):
    [x,y] = random.uniform(0,1,2)
    if (x > 0.5):
        xcord0.append(x*cos(2.0*pi*y)); ycord0.append(x*sin(2.0*pi*y))
    else:
        xcord1.append(x*cos(2.0*pi*y)); ycord1.append(x*sin(2.0*pi*y))
ax.scatter(xcord0,ycord0, marker=‘s‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.title(‘C‘)
ax = fig.add_subplot(224)
xcord1 = zeros(150); ycord1 = zeros(150)
xcord0 = random.uniform(-3,3,350); ycord0 = random.uniform(-3,3,350);
xcord1[0:50] = 0.3*random.standard_normal(50)+2.0; ycord1[0:50] = 0.3*random.standard_normal(50)+2.0

xcord1[50:100] = 0.3*random.standard_normal(50)-2.0; ycord1[50:100] = 0.3*random.standard_normal(50)-3.0

xcord1[100:150] = 0.3*random.standard_normal(50)+1.0; ycord1[100:150] = 0.3*random.standard_normal(50)
ax.scatter(xcord0,ycord0, marker=‘s‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.title(‘D‘)
plt.show()

寻找最大间隔

分类器求解的优化问题

这里的类别标签为什么采用-1和+1,而不是0和 1呢?这是由于-1和+1仅仅相差一个符号,
方便数学上的处理。我们可以通过一个统一公式来表示间隔或者数据点到分隔超平面的距离,同
时不必担心数据到底是属于-1还是+1类。

S V M 应用的一般框架

from numpy import *
from time import sleep

def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split(‘\t‘)
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

def selectJrand(i,m):
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj
dataMat,labelMat = loadDataSet(‘F:\\machinelearninginaction\\Ch06\\testSet.txt‘)
print(labelMat)

可以看得出来,这里采用的类别标签是-1和1

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H:
                    print("L==H")
                    continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0:
                    print("eta>=0")
                    continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001):
                    print("j not moving enough")
                    continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]):
                    b = b1
                elif (0 < alphas[j]) and (C > alphas[j]):
                    b = b2
                else:
                    b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print("iteration number: %d" % iter)
    return b,alphas

该函数有5个输人参数,分别
是:数据集、类别标签、常数C 、容错率和取消前最大的循环次数。

b,alphas = smoSimple(dataMat,labelMat, 0.6, 0.001, 40)
print(b)
print(alphas[alphas>0])

在原始数据集上对这些支持向量画圈之后的结果

import matplotlib
import matplotlib.pyplot as plt

from numpy import *
from matplotlib.patches import Circle

xcord0 = []
ycord0 = []
xcord1 = []
ycord1 = []
markers =[]
colors =[]
fr = open(‘F:\\machinelearninginaction\\Ch06\\testSet.txt‘)#this file was generated by 2normalGen.py
for line in fr.readlines():
    lineSplit = line.strip().split(‘\t‘)
    xPt = float(lineSplit[0])
    yPt = float(lineSplit[1])
    label = int(lineSplit[2])
    if (label == -1):
        xcord0.append(xPt)
        ycord0.append(yPt)
    else:
        xcord1.append(xPt)
        ycord1.append(yPt)

fr.close()
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord0,ycord0, marker=‘s‘, s=90)
ax.scatter(xcord1,ycord1, marker=‘o‘, s=50, c=‘red‘)
plt.title(‘Support Vectors Circled‘)
circle = Circle((4.6581910000000004, 3.507396), 0.5, facecolor=‘none‘, edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
circle = Circle((3.4570959999999999, -0.082215999999999997), 0.5, facecolor=‘none‘, edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
circle = Circle((6.0805730000000002, 0.41888599999999998), 0.5, facecolor=‘none‘, edgecolor=(0,0.8,0.8), linewidth=3, alpha=0.5)
ax.add_patch(circle)
#plt.plot([2.3,8.5], [-6,6]) #seperating hyperplane
b = -3.75567
w0=0.8065
w1=-0.2761
x = arange(-2.0, 12.0, 0.1)
y = (-w0*x - b)/w1
ax.plot(x,y)
ax.axis([-2,12,-8,6])
plt.show()

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]==‘lin‘:
        K = X * A.T   #linear kernel
    elif kTup[0]==‘rbf‘:
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
    else: raise NameError(‘Houston We Have a Problem -- That Kernel is not recognized‘)
    return K
class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]
        self.alphas = mat(zeros((self.m,1)))
        self.b = 0
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        self.K = mat(zeros((self.m,self.m)))
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def calcEk(oS, k):
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    maxK = -1; maxDeltaE = 0; Ej = 0
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don‘t calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don‘t have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej

def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]

def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H:
            print("L==H")
            return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0:
            print("eta>=0")
            return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("j not moving enough")
            return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=(‘lin‘, 0)):    #full Platt SMO
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
    iter = 0
    entireSet = True
    alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)
                print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:#go over non-bound (railed) alphas
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet: entireSet = False #toggle entire set loop
        elif (alphaPairsChanged == 0): entireSet = True
        print("iteration number: %d" % iter)
    return oS.b,oS.alphas
b,alphas = smoP(dataMat,labelMat, 0.6, 0.001, 40)
print(b)
print(alphas[alphas>0])

下面列出的一个小函数可
以用于实现上述任务:

def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w
w = calcWs(alphas,dataMat,labelMat)
print(w)

r = mat(dataMat[0])*w+b
print(r)

print(labelMat[0])

利用核函数将数据映射到高维空间

数据点处于一个圆中,人类的大脑能够意识到这一点。然而,对于分类器而言,
它只能识别分类器的结果是大于0还是小于0。如果只在1和^轴构成的坐标系中插人直线进行分类
的话,我们并不会得到理想的结果。我们或许可以对圆中的数据进行某种形式的转换,从而得到
某些新的变量来表示数据。在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果。
在这个例子中,我们将数据从一个特征空间转换到另一个特征空间。在新空间下,我们可以很容
易利用巳有的工具对数据进行处理。数学家们喜欢将这个过程称之为从一个特征空间到另一个特
择空间的映射。在通常情况下,这种映射会将低维特征空间映射到高维空间。

这种从某个特征空间到另一个特征空间的映射是通过核函数来实现的。

核函数并不仅仅应用于支持向量机,很多其他的机器学习算法也都用到核函数。

径向基核函数

上述高斯核函数将数据从其特征空间映射到更高维的空间,具体来说这里是映射到一个无穷
维的空间。

高斯核函数只是一个常用的核函数,使用
者并不需要确切地理解数据到底是如何表现的,而且使用高斯核函数还会得到一个理想的结果。

def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    m,n = shape(X)
    K = mat(zeros((m,1)))
    if kTup[0]==‘lin‘:
        K = X * A.T   #linear kernel
    elif kTup[0]==‘rbf‘:
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
    else: raise NameError(‘Houston We Have a Problem -- That Kernel is not recognized‘)
    return K

在测试中使用核函数

利用核函数进行分类的径向基测试函数

def testRbf(k1=1.3):
    dataArr,labelArr = loadDataSet(‘F:\\machinelearninginaction\\Ch06\\testSetRBF.txt‘)
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, (‘rbf‘, k1)) #C=200 important
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd] #get matrix of only support vectors
    labelSV = labelMat[svInd];
    print("there are %d Support Vectors" % shape(sVs)[0])
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],(‘rbf‘, k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]):
            errorCount += 1
    print("the training error rate is: %f" % (float(errorCount)/m))
    dataArr,labelArr = loadDataSet(‘F:\\machinelearninginaction\\Ch06\\testSetRBF2.txt‘)
    errorCount = 0
    datMat=mat(dataArr)
    labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],(‘rbf‘, k1))
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]):
            errorCount += 1
    print("the test error rate is: %f" % (float(errorCount)/m))    

原文地址:https://www.cnblogs.com/tszr/p/12046047.html

时间: 2024-11-11 13:11:50

吴裕雄--天生自然python机器学习:支持向量机SVM的相关文章

吴裕雄--天生自然python机器学习:决策树算法

我们经常使用决策树处理分类问题’近来的调查表明决策树也是最经常使用的数据挖掘算法. 它之所以如此流行,一个很重要的原因就是使用者基本上不用了解机器学习算法,也不用深究它 是如何工作的. K-近邻算法可以完成很多分类任务,但是它最大的缺点就是无法给出数据的内 在含义,决策树的主要优势就在于数据形式非常容易理解. 决策树很多任务都 是为了数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列 规则,机器学习算法最终将使用这些机器从数据集中创造的规则.专家系统中经常使用决策树,

吴裕雄--天生自然python机器学习:朴素贝叶斯算法

分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值 的次数,然后除以数据集的实例总数,就得到了特征取该值的概率. 首先从一个最简单的概率分类器开始,然后给 出一些假设来学习朴素贝叶斯分类器.我们称之为“朴素”,是因为整个形式化过程只做最原始.最简单的假设. 基于贝叶斯决策理论的分类方法 朴素贝叶斯是贝叶斯决策理论的一部

吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主要包含以下3种特征: 每年获得的飞行常客里程数 玩视频游戏所耗时间百分比 每周消费的冰淇淋公升数 将文本记录到转换NumPy的解析程序 import operator from numpy import * from os import listdir def file2matrix(filenam

吴裕雄--天生自然python机器学习:使用朴素贝叶斯过滤垃圾邮件

使用朴素贝叶斯解决一些现实生活中 的问题时,需要先从文本内容得到字符串列表,然后生成词向量. 准备数据:切分文本 测试算法:使用朴素贝叶斯进行交叉验证 文件解析及完整的垃圾邮件测试函数 def createVocabList(dataSet): vocabSet = set([]) #create empty set for document in dataSet: vocabSet = vocabSet | set(document) #union of the two sets return

吴裕雄--天生自然 PYTHON数据分析:糖尿病视网膜病变数据分析(完整版)

# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np

吴裕雄--天生自然python编程:turtle模块绘图(3)

turtle(海龟)是Python重要的标准库之一,它能够进行基本的图形绘制.turtle图形绘制的概念诞生于1969年,成功应用于LOGO编程语言. turtle库绘制图形有一个基本框架:一个小海龟在坐标系中爬行,其爬行轨迹形成了绘制图形.刚开始绘制时,小海龟位于画布正中央,此处坐标为(0,0),前进方向为水平右方. Python——turtle库 turtle库包含100多个功能函数,主要包括窗体函数.画笔状态函数和画笔运动函数3类. 画笔运动函数 turtle通过一组函数控制画笔的行进动作

吴裕雄--天生自然python编程:正则表达式

re.match函数 re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,match()就返回none. 函数语法: re.match(pattern, string, flags=0) 函数参数说明: 参数 描述 pattern 匹配的正则表达式 string 要匹配的字符串. flags 标志位,用于控制正则表达式的匹配方式,如:是否区分大小写,多行匹配等等. 匹配成功re.match方法返回一个匹配的对象,否则返回None. 我们可以使用group(num)

吴裕雄--天生自然python Google深度学习框架:Tensorflow实现迁移学习

import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platform import gfile import tensorflow.contrib.slim as slim # 加载通过TensorFlow-Slim定义好的inception_v3模型. import tensorflow.contrib.slim.python.slim.nets.incepti

吴裕雄--天生自然 人工智能机器学习项目:地图数据及细胞图片数据处理报告(续四)

运行的效果如下: 原文地址:https://www.cnblogs.com/tszr/p/11178107.html