Redis优化高并发下的秒杀性能

本文内容

使用Redis优化高并发场景下的接口性能
数据库乐观锁

随着双12的临近,各种促销活动开始变得热门起来,比较主流的有秒杀、抢优惠券、拼团等等。
涉及到高并发争抢同一个资源的主要场景有秒杀和抢优惠券。

前提

活动规则

  • 奖品数量有限,比如100个
  • 不限制参与用户数
  • 每个用户只能参与1次秒杀

活动要求

  • 不能多发,也不能少发,100个奖品要全部发出去
  • 1个用户最多抢1个奖品
  • 遵循先到先得原则,先来的用户有奖品

数据库实现

悲观锁性能太差,本文不予讨论,讨论一下使用乐观锁解决高并发问题的优缺点。
数据库结构

  • 未中奖时UserId为0,RewardAt为NULL
  • 中奖时UserId为中奖用户ID,RewardAt为中奖时间

乐观锁实现
乐观锁实际上并不存在真正的锁,乐观锁是利用数据的某个字段来做的,比如本文的例子就是以UserId来实现的。
实现流程如下:
1、查询UserId为0的奖品,如果未找到则提示无奖品

SELECT * FROM envelope WHERE user_id=0 LIMIT 1`

2、更新奖品的用户ID和中奖时间(假设奖品ID为1,中奖用户ID为100,当前时间为2019-10-29 12:00:00),这里的user_id=0就是我们的乐观锁了。

UPDATE envelope SET user_id=100, reward_at=‘2019-10-29 12:00:00‘ WHERE user_id=0 AND id=1`

3、检测UPDATE语句的执行返回值,如果返回1证明中奖成功,否则证明该奖品被其他人抢了

为什么要添加乐观锁

正常情况下获取奖品、然后把奖品更新给指定用户是没问题的。如果不添加user_id=0时,高并发场景下会出现下面的问题:

  • 两个用户同时查询到了1个未中奖的奖品(发生并发问题)
  • 将奖品的中奖用户更新为用户1,更新条件只有ID=奖品ID
  • 上述SQL执行是成功的,影响行数也是1,此时接口会返回用户1中奖
  • 接下来将中奖用户更新为用户2,更新条件也只有ID=奖品ID
  • 由于是同一个奖品,已经发给用户1的奖品会重新发放给用户2,此时影响行数为1,接口返回用户2也中奖
  • 所以该奖品的最终结果是发放给用户2
  • 用户1就会过来投诉活动方了,因为抽奖接口返回用户1中奖,但他的奖品被抢了,此时活动方只能赔钱了

添加乐观锁之后的抽奖流程

1.更新用户1时的条件为id=红包ID AND user_id=0 ,由于此时红包未分配给任何人,用户1更新成功,接口返回用户1中奖
2.当更新用户2时更新条件为id=红包ID AND user_id=0,由于此时该红包已经分配给用户1了,所以该条件不会更新任何记录,接口返回用户2中奖

乐观锁优缺点
优点

  • 性能尚可,因为无锁
  • 不会超发

缺点

  • 通常不满足“先到先得”的活动规则,一旦发生并发,就会发生未中奖的情况,此时奖品库还有奖品

压测
在MacBook Pro 2018上的压测表现如下(Golang实现的HTTP服务器,MySQL连接池大小100,Jmeter压测):

  • 500并发 500总请求数 平均响应时间331ms 发放成功数为31 吞吐量458.7/s

Redis实现

可以看到乐观锁的实现下争抢比太高,不是推荐的实现方法,下面通过Redis来优化这个秒杀业务。

Redis高性能的原因

  • 单线程 省去了线程切换开销
  • 基于内存的操作 虽然持久化操作涉及到硬盘访问,但是那是异步的,不会影响Redis的业务
  • 使用了IO多路复用

实现流程

  • 活动开始前将数据库中奖品的code写入Redis队列中
  • 活动进行时使用lpop弹出队列中的元素
  • 如果获取成功,则使用UPDATE语法发放奖品
UPDATE reward SET user_id=用户ID,reward_at=当前时间 WHERE code=‘奖品码‘

如果获取失败,则当前无可用奖品,提示未中奖即可

使用Redis的情况下并发访问是通过Redis的lpop()来保证的,该方法是原子方法,可以保证并发情况下也是一个个弹出的。

压测

在MacBook Pro 2018上的压测表现如下(Golang实现的HTTP服务器,MySQL连接池大小100,Redis连接池代销100,Jmeter压测):

  • 500并发 500总请求数 平均响应时间48ms 发放成功数100 吞吐量497.0/s

结论

可以看到Redis的表现是稳定的,不会出现超发,且访问延迟少了8倍左右,吞吐量还没达到瓶颈,可以看出Redis对于高并发系统的性能提升是非常大的!接入成本也不算高,值得学习!

实验代码

// main.go
package main

import (
    "fmt"
    "github.com/go-redis/redis"
    _ "github.com/go-sql-driver/mysql"
    "github.com/jinzhu/gorm"
    "log"
    "net/http"
    "strconv"
    "time"
)

type Envelope struct {
    Id        int `gorm:"primary_key"`
    Code      string
    UserId    int
    CreatedAt time.Time
    RewardAt  *time.Time
}

func (Envelope) TableName() string {
    return "envelope"
}

func (p *Envelope) BeforeCreate() error {
    p.CreatedAt = time.Now()
    return nil
}

const (
    QueueEnvelope = "envelope"
    QueueUser     = "user"
)

var (
    db          *gorm.DB
    redisClient *redis.Client
)

func init() {
    var err error
    db, err = gorm.Open("mysql", "root:[email protected](localhost:3306)/test?charset=utf8&parseTime=True&loc=Local")
    if err != nil {
        log.Fatal(err)
    }
    if err = db.DB().Ping(); err != nil {
        log.Fatal(err)
    }
    db.DB().SetMaxOpenConns(100)
    fmt.Println("database connected. pool size 10")
}

func init() {
    redisClient = redis.NewClient(&redis.Options{
        Addr:     "localhost:6379",
        DB:       0,
        PoolSize: 100,
    })
    if _, err := redisClient.Ping().Result(); err != nil {
        log.Fatal(err)
    }
    fmt.Println("redis connected. pool size 100")
}

// 读取Code写入Queue
func init() {
    envelopes := make([]Envelope, 0, 100)
    if err := db.Debug().Where("user_id=0").Limit(100).Find(&envelopes).Error; err != nil {
        log.Fatal(err)
    }
    if len(envelopes) != 100 {
        log.Fatal("不足100个奖品")
    }
    for i := range envelopes {
        if err := redisClient.LPush(QueueEnvelope, envelopes[i].Code).Err(); err != nil {
            log.Fatal(err)
        }
    }
    fmt.Println("load 100 envelopes")
}

func main() {
    http.HandleFunc("/envelope", func(w http.ResponseWriter, r *http.Request) {
        uid := r.Header.Get("x-user-id")
        if uid == "" {
            w.WriteHeader(401)
            _, _ = fmt.Fprint(w, "UnAuthorized")
            return
        }
        uidValue, err := strconv.Atoi(uid)
        if err != nil {
            w.WriteHeader(400)
            _, _ = fmt.Fprint(w, "Bad Request")
            return
        }
        // 检测用户是否抢过了
        if result, err := redisClient.HIncrBy(QueueUser, uid, 1).Result(); err != nil || result != 1 {
            w.WriteHeader(429)
            _, _ = fmt.Fprint(w, "Too Many Request")
            return
        }
        // 检测是否在队列中
        code, err := redisClient.LPop(QueueEnvelope).Result()
        if err != nil {
            w.WriteHeader(200)
            _, _ = fmt.Fprint(w, "No Envelope")
            return
        }
        // 发放红包
        envelope := &Envelope{}
        err = db.Where("code=?", code).Take(&envelope).Error
        if err == gorm.ErrRecordNotFound {
            w.WriteHeader(200)
            _, _ = fmt.Fprint(w, "No Envelope")
            return
        }
        if err != nil {
            w.WriteHeader(500)
            _, _ = fmt.Fprint(w, err)
            return
        }
        now := time.Now()
        envelope.UserId = uidValue
        envelope.RewardAt = &now
        rowsAffected := db.Where("user_id=0").Save(&envelope).RowsAffected // 添加user_id=0来验证Redis是否真的解决争抢问题
        if rowsAffected == 0 {
            fmt.Printf("发生争抢. id=%d\n", envelope.Id)
            w.WriteHeader(500)
            _, _ = fmt.Fprintf(w, "发生争抢. id=%d\n", envelope.Id)
            return
        }
        _, _ = fmt.Fprint(w, envelope.Code)
    })

    fmt.Println("listen on 8080")
    fmt.Println(http.ListenAndServe(":8080", nil))
}

最后

喜欢的可以关注我的公众号:java小瓜哥的分享平台。谢谢支持!

原文地址:https://blog.51cto.com/14611538/2453107

时间: 2024-09-29 06:14:02

Redis优化高并发下的秒杀性能的相关文章

一文带你了解Redis优化高并发下的秒杀性能

本文内容 使用Redis优化高并发场景下的接口性能数据库乐观锁 随着双12的临近,各种促销活动开始变得热门起来,比较主流的有秒杀.抢优惠券.拼团等等.涉及到高并发争抢同一个资源的主要场景有秒杀和抢优惠券. 前提 活动规则 奖品数量有限,比如100个 不限制参与用户数 每个用户只能参与1次秒杀 活动要求 不能多发,也不能少发,100个奖品要全部发出去 1个用户最多抢1个奖品 遵循先到先得原则,先来的用户有奖品 数据库实现 悲观锁性能太差,本文不予讨论,讨论一下使用乐观锁解决高并发问题的优缺点.数据

php结合redis实现高并发下的抢购、秒杀功能

原文: http://blog.csdn.net/nuli888/article/details/51865401 抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问

php 结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 [php] view plain copy <?php $conn=mysql_con

(高级篇)php结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数

【转】php结合redis实现高并发下的抢购、秒杀功能

抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题 常规写法: 查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsigned,当库存为0时,因为字段不能为负数

Redis实现高并发下的抢购、秒杀功能

博主最近在项目中遇到了抢购问题!现在分享下.抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存来处理抢购,避免直接操作数据库,例如使用Redis.重点在于第二个问题常规写法:查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在高并发下就会有问题,导致库存量出现负数 优化方案1:将库存字段number字段设为unsig

redis实现高并发下的抢购/秒杀功能

1, http://www.cnblogs.com/phpper/p/6716248.html https://www.cnblogs.com/phpper/p/7085663.html https://www.cnblogs.com/TankXiao/p/4045439.html 之前写过一篇文章,高并发的解决思路(点此进入查看),今天再次抽空整理下实际场景中的具体代码逻辑实现吧:抢购/秒杀是如今很常见的一个应用场景,那么高并发竞争下如何解决超抢(或超卖库存不足为负数的问题)呢? 常规写法:

利用听云Server和听云Network实测Kubernetes和Mesos在高并发下的网络性能

文章出自:听云博客 随着公司业务的不断增长,我们的应用数量也有了爆发式增长.伴随着应用爆发式的增长,管理的难度也随之加大.如何在业务爆发增长的同时快速完成扩容成了很大的挑战.Docker的横空出世恰巧解决了我们的问题.利用Docker我们可以快速完成扩容缩容,且配置统一,不易出错. 在Docker的集群管理选型上,我们比较纠结,目前比较流行的是Mesos和Kubernetes.从功能来说,我们更倾向于使用Kubernetes,他在容器编排方面的能力强于Meoso,且提供了持久化存储方案,更适合我

PHP和Redis实现在高并发下的抢购及秒杀功能示例详解

抢购.秒杀是平常很常见的场景,面试的时候面试官也经常会问到,比如问你淘宝中的抢购秒杀是怎么实现的等等. 抢购.秒杀实现很简单,但是有些问题需要解决,主要针对两个问题: 一.高并发对数据库产生的压力二.竞争状态下如何解决库存的正确减少("超卖"问题) 第一个问题,对于PHP来说很简单,用缓存技术就可以缓解数据库压力,比如memcache,redis等缓存技术.第二个问题就比较复杂点: 常规写法:查询出对应商品的库存,看是否大于0,然后执行生成订单等操作,但是在判断库存是否大于0处,如果在