Problem Description
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29).
Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6.
Input
The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000).
A test case of X = 0 indicates the end of input, and should not be processed.
Output
For each test case, in a separate line, please output the result of S modulo 29.
Sample Input
1
10000
0
Sample Output
6
10
题意:找2014^x%29的值。
快速幂和取模乘法逆元。乘法逆元:x=(1/b)%m. 求x的值。x*b=k*m+1,即k去最小正整数时,x也为整数。即b能被k*m+1整除。
1 #include<cstdio> 2 #include<cstring> 3 using namespace std; 4 int f1(int x,int y) 5 { 6 int ans=1; 7 while (y) 8 { 9 if (y&1) ans=ans*x%29; 10 x=x*x%29; 11 y>>=1; 12 } 13 return ans; 14 } 15 int f2(int x) 16 { 17 int i=1; 18 while (i) 19 { 20 if ((29*i+1)%x==0) break; 21 i++; 22 } 23 return (29*i+1)/x; 24 } 25 int main() 26 { 27 int x,a,b,c; 28 while (~scanf("%d",&x)) 29 { 30 if (!x) break; 31 a=(f1(2,2*x+1)-1)%29; 32 c=(((f1(3,x+1)-1)%29)*f2(2))%29; 33 b=(((f1(22,x+1)-1)%29)*f2(21))%29; 34 printf("%d\n",(a*b*c)%29); 35 } 36 return 0; 37 }