3D数学基础:四元数与欧拉角之间的转换

在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系:

图1 3D Cartesian coordinate System (from wikipedia)

定义分别为绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll。

图2 Tait-Bryan angles (from wikipedia)

一、四元数的定义

通过旋转轴和绕该轴旋转的角度可以构造一个四元数:

其中是绕旋转轴旋转的角度,为旋转轴在x,y,z方向的分量(由此确定了旋转轴)。

二、欧拉角到四元数的转换

三、四元数到欧拉角的转换

       arctanarcsin的结果是,这并不能覆盖所有朝向(对于的取值范围已经满足),因此需要用atan2来代替arctan

四、在其他坐标系下使用

在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在Direct3D中,笛卡尔坐标系的X轴变为Z轴,Y轴变为X轴,Z轴变为Y轴(无需考虑方向)。

五、示例代码

http://www.cppblog.com/Files/heath/Euler2Quaternion.rar
Demo渲染两个模型,左边使用欧拉角,右边使用四元数,方向键Up、Left、Right旋转模型。

参考文献:
[1] http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
[2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985
[3]四元数与欧拉角之间的转换
[4]四元数与旋转
[5]四元数与旋转
[6]【Unity技巧】四元数(Quaternion)和旋转
时间: 2024-11-08 04:15:33

3D数学基础:四元数与欧拉角之间的转换的相关文章

3D图形学在游戏开发中的,矩阵,四元数,欧拉角之间的底层转换算法。

在游戏开发的过程中难免会遇到欧拉角和四元数直接的转换问题,如果有些过shader的朋友,肯定也遇到过四元数,欧拉角和矩阵直接的转换问题,这里我把这几种格式直接的转换算法写在这里有需要的朋友可以拿去有,别忘了,点赞关注.废话不多说,直接上代码. 四元数转矩阵的底层算法: public Quaternion QuaternionMatrix(float w, float x, float y, float z) { Matrix4x4 matrix = new Matrix4x4(); matrix

飞控姿态解算中,欧拉角与四元数之间的转换

//欧拉角转四元数 void cjx_from_euler(float roll, float pitch, float yaw) { float cr2 = cosf(roll*0.5f); float cp2 = cosf(pitch*0.5f); float cy2 = cosf(yaw*0.5f); float sr2 = sinf(roll*0.5f); float sp2 = sinf(pitch*0.5f); float sy2 = sinf(yaw*0.5f); q1 = cr2

Unity手游之路<四>3d旋转-四元数,欧拉角和变幻矩阵

http://blog.csdn.net/janeky/article/details/17272625 今天我们来谈谈关于Unity中的旋转.主要有三种方式.变换矩阵,四元数和欧拉角. 定义 变换矩阵 可以执行任意的3d变换(平移,旋转,缩放,切边)并且透视变换使用齐次坐标.一般比较少用到.Unity中提供了一个Matrix4x4矩阵类 四元数 “四元数是最简单的超复数. 复数是由实数加上元素 i 组成,其中i^2 = -1. 相似地,四元数都是由实数加上三个元素 i.j.k 组成,而且它们有

四元数和欧拉角,轴角对之间的相互转化

在3D图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点.本文主要归纳了两种表达方式的转换,计算公式采用3D笛卡尔坐标系: 图1 3D Cartesian coordinate System (from wikipedia) 定义分别为绕Z轴.Y轴.X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw.Pitch.Roll. 图2 Tait-Bryan angles (from wikipedia) 一.四元数的定义 通过旋转轴和绕该

四元数 和 欧拉角

标题:[Unity技巧]四元数(Quaternion)和旋转  转自:http://blog.csdn.net/candycat1992/article/details/41254799 原作者:妈妈说女孩子要自立自强 四元数介绍 旋转,应该是三种坐标变换——缩放.旋转和平移,中最复杂的一种了.大家应该都听过,有一种旋转的表示方法叫四元数.按照我们的习惯,我们更加熟悉的是另外两种旋转的表示方法——矩阵旋转和欧拉旋转.矩阵旋转使用了一个4*4大小的矩阵来表示绕任意轴旋转的变换矩阵,而欧拉选择则是按

刚体在三维空间的旋转(关于旋转矩阵、DCM、旋转向量、四元数、欧拉角)

最近学习了一些关于三维空间旋转相关的知识,借此梳理一下备忘. 三维空间的旋转(3D Rotation)是一个很神奇的东东:如果对某个刚体在三维空间进行任意次的旋转,只要旋转中心保持不变,无论多少次的旋转都可以用绕三维空间中某一个轴的一次旋转来表示.表示三维空间的旋转有多种互相等价的方式,常见的有旋转矩阵.DCM.旋转向量.四元数.欧拉角等.本篇文章主要梳理一下这些表示方式及相互转换的方法. 1. 欧拉角(Euler Angle) 最直观的表示方式是绕刚体自身的X.Y.Z三个轴分别进行旋转某个角度

世界坐标空间与观察坐标系之间的转换

1.世界坐标空间与观察坐标系之间的转换 已知:观察坐标系相对世界坐标系的u,v,w轴与起点q,将世界坐标系中一点变换到观察坐标系 使用左手坐标系推导 u = ( ux , uy , uz , 0 ) v = ( vx , vy , vz , 0 ) w = (wx , wy , wz , 0 ) q = ( qx , qy , qz , 1 ) 观察坐标系中的点可以表示为: p = au+bv+cw+q 即为 (a,b,c,1) 展开上述公式 p =  a * ux * x + a * uy *

Android单位转换 (px、dp、sp之间的转换工具类)

在Android开发中,涉及到屏幕视频问题的时候,px.dp.sp之间的转换比较重要的一部分,所以杨哥整理了一个工具类给大伙用. package com.zw.express.tool; import android.content.Context;import android.util.DisplayMetrics;/** * ydc * @author Administrator * */public class DensityUtils { /**     * 根据手机的分辨率从 dip

API--Date-毫秒值和对象之间的转换

java.util 类 Date 类 Date 表示特定的瞬间,精确到毫秒. 在 JDK 1.1 之前,类 Date 有两个其他的函数.它允许把日期解释为年.月.日.小时.分钟和秒值.它也允许格式化和解析日期字符串.不过,这些函数的 API 不易于实现国际化.从 JDK 1.1 开始,应该使用 Calendar 类实现日期和时间字段之间转换,使用 DateFormat 类来格式化和解析日期字符串.Date 中的相应方法已废弃. 月份由从 0 至 11 的整数表示:0 是一月.1 是二月等等:因此