《统计学习方法》:EM算法重点学习以及习题。

  适用场景:有隐变量的时候特别适用。

  EM算法主要分为两个步骤:E步和M步。

  输入:选择参数的初值theta,进行迭代。

  E步: 每次迭代改变初值。定义Q函数。Q函数为迭代的期望值。

  M步: 求使E步得到的Q函数最大的theta值。

  最后,重复进行E步和M步。直到最终theta值变化较小,即为收敛为止。

  注意:初值为算法的选择尤为重要。初值的选择会影响结果。

  EM算法得到的估计序列能够最终收敛得到结果。但是收敛得到的结果并不能保证能够收敛到全局最大值或者局部最大值。

  EM算法在两个方面极其有用:在高斯混合模型学习之中非常有用。

  EM算法可以解释F函数的极大-极大算法。广义期望极大算法(GEM)算法是基于这个解释的推广与应用。

  GEM算法有三种解法:见《统计学习方法》的P168,P169

时间: 2024-12-28 17:29:20

《统计学习方法》:EM算法重点学习以及习题。的相关文章

EM算法 - 2 - EM算法在高斯混合模型学习中的应用

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 在开始讲解之前,我要先给看这篇文章的你道个歉,因为<2012.李航.统计学习方法.pdf>中

机器学习笔记—EM 算法

EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计模型参数,但是,当模型含有隐变量时,情况就复杂一些,相当于一个双层的概率模型,要估计出两层的模型参数,就需要换种方法求解.EM 算法是通过迭代的方法求解. 监督学习是由训练数据 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))} 学习条件概率分布 P(Y|X) 或决策

EM算法 - 1 - 介绍

声明: 1,本篇为个人对<2012.李航.统计学习方法.pdf>的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址). 2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其他帖子的小部分内容,如果原作者看到可以私信我,我会将您的帖子的地址付到下面. 3,如果有内容错误或不准确欢迎大家指正. 4,如果能帮到你,那真是太好了. 在开始之前需要准备些预备知识,如果你已经全部掌握那就直接向下翻到EM算法这一章吧. 极大似然估计 由于E

统计学习方法 李航---第9章 EM算法及其推广

第9章 EM算法及其推广 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大( maximization ),所以这一算法称为期望极大算法(expectation maximization algorithm),简称EM算法. 9.1  EM算法的引入 一般地,用Y表示观测随机变量的数据,Z表示隐随机变量的数据.Y和Z连在一起称为完全数据( c

统计学习方法c++实现之八 EM算法与高斯混合模型

EM算法与高斯混合模型 前言 EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法.如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这种问题中A的结果就是隐变量,我们只有最后一个硬币的结果,其中的隐变量无法观测,所以这种无法直接根

统计学习方法:CART算法

作者:桂. 时间:2017-05-13  14:19:14 链接:http://www.cnblogs.com/xingshansi/p/6847334.html . 前言 内容主要是CART算法的学习笔记. CART算法是一个二叉树问题,即总是有两种选择,而不像之前的ID3以及C4.5B可能有多种选择.CART算法主要有回归树和分类树,二者常用的准则略有差别:回归树是拟合问题,更关心拟合效果的好坏,此处用的是均方误差准则; 分类树是分类问题,更像是离散变量的概率估计,用与熵类似的Gini系数进

机器学习-李航-统计学习方法学习笔记之感知机(2)

在机器学习-李航-统计学习方法学习笔记之感知机(1)中我们已经知道感知机的建模和其几何意义.相关推导也做了明确的推导.有了数学建模.我们要对模型进行计算. 感知机学习的目的是求的是一个能将正实例和负实例完全分开的分离超平面.也就是去求感知机模型中的参数w和b.学习策略也就是求解途径就是定义个经验损失函数,并将损失函数极小化.我们这儿采用的学习策略是求所有误分类点到超平面S的总距离.假设超平面s的误分类点集合为M,那么所有误分类点到超平面S的总距离为 显然损失函数L(w,b)是非负的,如果没有误分

EM算法学习笔记

最近学习整理相关算法,发现EM算法和MLE估计都是十分优秀的算法. 首先最大似然估计是一种已知结果,通过改变参数theta使得这种结果出现的可能性最大. 而EM算法则是可以解决含有隐藏变量的问题.举个大家都用的例子,就是我们要统计某学校男女同学的身高,如果我们可以区分男女同学,那么用最大似然估计即可,但是现在我们无法知道某个同学的性别,那么怎么来推断男女同学的身高分布呢? 假设我们想估计知道A和B两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到

李航老师的《统计学习方法》第二章算法的matlab程序

参考了http://blog.sina.com.cn/s/blog_bceeae150102v11v.html#post % 感知机学习算法的原始形式,算法2.1参考李航<统计学习方法>书中第二章的算法P29 close allclear allclcX=[3,3;4,3;1,1];Y=[1,1,-1];%训练数据集及标记learnRate=1;%学习率Omega=zeros(1,size(X,2))b=0 %% ω和b的初值 i=1;k=0;while 1 if Y(i)*(sum(Omeg