机器学习中使用的神经网络(五)

机器学习的三种类型

监督学习,加强学习和非监督学习

Types of learning task
• Supervised learning
– Learn to predict an output when given an input vector.
• Reinforcement learning
– Learn to select an action to maximize payoff.
• Unsupervised learning
– Discover a good internal representation of the input

Two types of supervised learning
•Each training case consists of an input vector x and a target output t.
• Regression: The target output is a real number or a whole vector of real numbers.
– The price of a stock in 6 months time.
– The temperature at noon tomorrow.
• Classification: The target output is a class label.
– The simplest case is a choice between 1 and 0.
– We can also have multiple alternative labels.

How supervised learning typically works
We start by choosing a model-class:
– A model-class, f, is a way of using some numerical parameters, W, to map each input vector, x, into a predicted
output y.
• Learning usually means adjusting the parameters to reduce the discrepancy between the target output, t, on each training case and the actual output, y, produced by the model.
– For regression, is often a sensible measure of the discrepancy.
– For classification there are other measures that are generally more sensible (they also work better).

Reinforcement learning
•In reinforcement learning, the output is an action or sequence of actions and the only supervisory signal is an occasional scalar reward.
– The goal in selecting each action is to maximize the expected sum of the future rewards.
– We usually use a discount factor for delayed rewards so that we don’t have to look too far into the future.
• Reinforcement learning is difficult:
– The rewards are typically delayed so its hard to know where we went wrong (or right).
– A scalar reward does not supply much information.
• This course cannot cover everything and reinforcement learning is one of the important topics we will not cover.

Unsupervised learning
•For about 40 years, unsupervised learning was largely ignored by the machine learning community
– Some widely used definitions of machine learning actually excluded it.
– Many researchers thought that clustering was the only form of unsupervised learning.
• It is hard to say what the aim of unsupervised learning is.
– One major aim is to create an internal representation of the input that is useful for subsequent supervised or reinforcement learning.
– You can compute the distance to a surface by using the disparity between two images. But you don’t want to learn to compute disparities by stubbing your toe thousands of times.

Other goals for unsupervised learning
• It provides a compact, low-dimensional representation of the input.
– High-dimensional inputs typically live on or near a low dimensional manifold (or several such manifolds).
– Principal Component Analysis is a widely used linear method for finding a low-dimensional representation.
• It provides an economical high-dimensional representation of the input in terms of learned features.
– Binary features are economical.
– So are real-valued features that are nearly all zero.
• It finds sensible clusters in the input.
– This is an example of a very sparse code in which only one of the features is non-zero.

时间: 2024-10-11 07:21:16

机器学习中使用的神经网络(五)的相关文章

机器学习中使用的神经网络(七)

A geometrical view of perceptron 感知器的几何视图 Weight-space 权值空间 在这个空间中,每一个感知器中的权值都表示一维,而空间中的一点则代表了所有权值的特定集合,假设消除阈值,则每个训练样本都可以看做通过起点的超平面.So, points in the space correspond to weight vectors and training cases correspond to planes. 也就是说,空间中的点对应权值向量,超平面则对应训

机器学习中使用的神经网络第五讲笔记

Geoffery Hinton教授的Neuron Networks for Machine Learning的第五讲主要介绍物体识别问题的难点及克服这些难点的方法,重点介绍了数字识别和物体识别中使用的卷积网络. Why object recognition is difficult 我们知道识别真实场景中的物体是很困难的,这一小节我们来介绍造成这些困难的一些东西. Segmentation: 在一个图像中,我们很难将其中的一个物体与其他的物体分隔开.在现实生活中,我们人类有两只眼睛且我们身体可以

机器学习中使用的神经网络(一)

本系列博客根据Geoffrey Hinton课程Neural Network for Machine Learning总结. 课程网址为: https://www.coursera.org/course/neuralnets 1.Some examples of tasks best solved by learning 机器学习最适用的领域举例 - Recognizing patterns: 模式识别– Objects in real scenes 物体识别 – Facial identiti

机器学习中使用的神经网络第十讲笔记

Geoffery Hinton教授的Neuron Networks for Machine Learning的第十讲介绍了如何combine模型,并进一步从实际应用的角度介绍了完全贝叶斯方法. Why it helps to combine models 这一小节,我们讨论在做预测时为什么要结合许多模型.使用多个模型可以在拟合真正的规则和拟合样本错误之间做一个很好的折中. 我们已经知道,当训练数据比较少时容易出现过拟合,如果我们平均一下许多不同模型的预测,那我们就可以降低过拟合的程度.对于回归来

机器学习中使用的神经网络第六讲笔记

Geoffery Hinton教授的Neuron Networks for Machine Learning的第六讲介绍了随机梯度下降法(SGD),并且介绍了加快学习速度的动量方法(the momentum method).针对网络中每一个连接的自适应学习步长(adaptive learning rates for each connection)和RMSProp算法. 这几个算法的难度很大,需要反复推理思考,并在实践中摸索以加深理解. Overview of mini-batch gradie

机器学习中使用的神经网络第七讲

这一节主要介绍了RNN和LSTM. Modeling sequences: A brief overview 在这一小节,我们将对应用于序列(sequences)的不同类型的模型做一个概括.我们从最简单的模型--ultra aggressive models(该模型尝试根据前一个序列(term or sequence)去预测下一个序列)开始,接着再讨论该模型使用了隐含层的复杂变形,然后再介绍更多有着hidden state和hidden dynamics的模型(这其中包含了linear dyna

机器学习中使用的神经网络(四)

机器学习的一个简单例子 It is a very simple kind of NeuralNet and it is gonna be learning to recognize digits and you gonna be able to see how the weights  evolved as we run a very simple learning algorithm. A very simple learning algorithm for traing a very sim

机器学习中使用的神经网络第四讲笔记

Geoffery Hinton教授的Neuron Networks for Machine Learning的第四讲主要介绍如何使用back propagation算法来学习到词汇的特征表示. Learning to predict the next word 接下来的几小节主要介绍如何使用back propagation算法来学习到词汇的特征表示.我们从一个很简单的例子开始,介绍使用back propagation算法来将词汇间的相关信息转换成特征向量. 下图给出了一个家庭的树状图,我们要做的

机器学习中使用的神经网络第九讲笔记

Geoffery Hinton教授的Neuron Networks for Machine Learning的第八讲为可选部分,好像很难,这里就先跳过了,以后有用的时候再回来补.第九讲介绍了如何避免过拟合,提高模型的泛化能力. 这是Cousera上的课程链接 Overview of ways to improve generalization 这一小节,我们介绍如何在网络有过多能力处理过多容量的训练数据集时,如何通过降低过拟合来提高网络模型的泛化能力.下面将介绍几种控制网络容量的方法,以及如何设