局部不变特征与尺度空间理论

局部不变特征与尺度空间理论

局部不变性:尺度不变性与旋转不变性。

尺度不变性:人类在识别一个物体时,不管这个物体或远或近,都能对它进行正确的辨认,这就是所谓的尺度不变性。

尺度空间理论经常与生物视觉关联,有人也称图像局部不变性特征为基于生物视觉的不变性方法。

旋转不变性:当这个物体发生旋转时,我们照样可以正确地辨认它,这就是所谓的旋转不变性。

一、局部不变特征

全局特征:从整个图像中抽取的特征。较多的运用在图像检索领域,如图像颜色直方图。

局部特征:从图像的局部区域中抽取的特征,而这个局部区域往往是图像中的一个像素及它周围的邻域。

一种好的局部特征应该具有下面的特性:

1)可重复性:同一个物体在不同时间,不同角度拍到图像中,检测到的特征对应的越多越好。

2)独特性:特征在该物体上表现为独特性,能与场景下其他物体区分。

3)局部性:特征往旆是物体某个局部的特点,这样才可以避免遮挡时不能匹配的问题。

4)数量性:检测到的特征数目一定要多,密集度最好能在一定程度上反映图像的内容。

5)准确性:得到的特征应该能被精确定位,能够精确到像素。

6)高效性:特征检测算法运算要快。

二、图像尺度空间理论

当用一个机器视觉系统分析未知场景时,计算机没有办法预先知识图像中物体尺度,因此,我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度。

所以在很多时候,我们会在将图像构建为一系列不同尺度的图像集,在不同的尺度中去检测我们感兴趣的特征。

2.1 金字塔分辨率

图像金字塔化的一般步骤:首先,图像经过一个低通滤波器进行平滑(这个步骤会使图像变模糊,好像模仿人的视觉中远处的物体没有近处的清晰的原理),然后,对这个平滑后的图像进行抽样(一般抽样比例在水平和竖直方向上都为1/2),从而得到一系列的缩小的图像。

Mat image = imread("../cat.png");
Mat kernel = getGaussianKernel(3, 0.5);// 3*3的 方差为2高斯核
Mat pyrImage;
filter2D(image, pyrImage, image.depth(), kernel);
resize(pyrImage, pyrImage, Size(),0.5,0.5);

   

图像的金字塔化能高效地(计算效率也较高)对图像进行多尺度的表达,但它缺乏坚实的理论基础,不能分析图像中物体的各种尺度。

信号的尺度空间刚提出是就是通过一系列单参数、宽度递增的高斯滤波器将原始信号滤波得到到组低频信号。那么一个很明显的疑问是:除了高斯滤波之外,其他带有参数t的低通滤波器是否也可以用来生成一个尺度空间。

后来Koenerink、Lindeberg[Scale-space theory in computer vision]、Florack等人用精确的数学形式通过不同的途径都证明了高斯核是实现尺度变换的唯一变换核。

使用高斯滤波器对图像进行尺度空间金塔塔图的构建,让这个尺度空间具有下面的性质:

1)加权平均和有限孔径效应

信号在尺度t上的表达可以看成是原信号在空间上的一系列加权平均,权重就是具有不同尺度参数的高斯核。

信号在尺度t上的表达也对应于用一个无方向性的孔径函数(特征长度为$\sigma=\sqrt{t}$)来观测信号的结果。这时候信号中特征长度小于$\sigma$的精细结构会被抑制。

2)层叠平滑

$$g(\mu,\sigma_1)\ast g(\mu,\sigma_2)=g(\mu,\sigma_1+\sigma_2)$$

这个性质的意思就是说不同的高斯核对图像的平滑是连续的。

3)局部极值递性

这个特征可以从人眼的视觉原理去理解,人在看一件物体时,离得越远,物体的细节看到的越少,细节特征是在减少的。

高斯核对图像进行滤波具有压制局部细节的性质。

4)尺度伸缩不变性。

这里只是一个公式推导的问题,对原来的信号加一个变换函数,对变换后的信号再进行高斯核的尺度空间生成,新的信号的极值点等特征是不变的。

Young对经生理学的研究中发现,哺乳动物的视网膜和视觉皮层的感受区域可以很好地用4阶以内的高斯微分来建模。

2.2 尺度的选择

一般我们采集到的图像中,我们并不知道我们感兴趣的目标在图像中的尺度,在这样的情况下,我们对图像进行分析时就无法选择合适的参数,比如边缘检测,可能由于参数不当,而造成过多的局部细节。

在实际操作中,我们需要定义一个特征响应函数,在不同的尺度空间上寻找一个极值点。

需要注意的是,图像结构往往是在粗糙的尺度上被检测到,此时位置信息未必是最准确的,因此通常图像的尺度分析包含两个阶段:首先在粗尺度上进行特征(结构)检测,然后再在细尺度上进行精确定位。

局部不变特征与尺度空间理论,布布扣,bubuko.com

时间: 2024-10-05 04:58:18

局部不变特征与尺度空间理论的相关文章

【综述】(中科院)樊彬老师-“局部图像特征描述概述”

[综述](中科院)樊彬老师-“局部图像特征描述概述” 这次我们荣幸地邀请到中国科学院自动化研究所的樊彬老师为我们撰写图像特征描述符方面的最新综述.樊彬老师在图像特征描述方面已连续发表了包括TPAMI.PR.ICCV.CVPR在内的多篇高质量论文.他的个人主页为:http://www.sigvc.org/bfan/ 以后我们将持续邀请国内外众多老师做最新的视觉计算专业综述报告,如特征提取和描述.稀疏表达.人体跟踪.三维衣服布料动画.轻量级Web3D等,并陆续在学术论坛上发布.各位老师会尽量使综述通

尺度空间理论

看到一篇博文,主要讲的是图像金字塔:http://www.cnblogs.com/ronny/p/3886013.html 最后博主关于尺度的选择很有启发性,当我们不知道物体的尺度有多大时,可以先定义一个模板,再与金字塔的每层图像进行匹配. #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highg

尺度空间理论详解

http://www.cnblogs.com/ronny/p/3886013.html 原文地址:https://www.cnblogs.com/invisible2/p/9208314.html

图像局部显著性—点特征

基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. SalientDetection 已经好就没有复习过了,DNN在识别领域的超常表现在各个公司得到快速应用,在ML上耗了太多时间,求职时被CV的知识点虐死... 点探测总结(SIft.PCA-SIft.Surf.GLOH)         原文链接(SIFT):http://www.cnblogs.com/cfantaisie/archiv

paper 64:尺度空间(Scale space)理论

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征.尺度空间方法将传统的单尺度视觉信息处理技术纳入尺度不断变化的动态分析框架中,因此更容易获得图像的本质特征.尺度空间的生成目的是模拟图像数据多尺度特征.高斯卷积核是实现尺度变换的唯一线性核. 尺度空间理论的动机: 现实世界的物体由不同尺度的结构所组成: 在人的视觉中,对物体观察的尺度不同,物体的呈现方式也不同: 对计算机视觉而言,无法

尺度空间(Scale space)理论研究笔记

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征.尺度空间方法将传统的单尺度视觉信息处理技术纳入尺度不断变化的动态分析框架中,因此更容易获得图像的本质特征.尺度空间的生成目的是模拟图像数据多尺度特征.高斯卷积核是实现尺度变换的唯一线性核. 尺度空间理论的动机: 现实世界的物体由不同尺度的结构所组成:在人的视觉中,对物体观察的尺度不同,物体的呈现方式也不同:对计算机视觉而言,无法预知

尺度空间(Scale space)理论

尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的參数,通过连续变化尺度參数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征.尺度空间方法将传统的单尺度视觉信息处理技术纳入尺度不断变化的动态分析框架中,因此更easy获得图像的本质特征.尺度空间的生成目的是模拟图像数据多尺度特征.高斯卷积核是实现尺度变换的唯一线性核. 尺度空间理论的动机: 现实世界的物体由不同尺度的结构所组成: 在人的视觉中,对物体观察的尺度不同,物体的呈现方式也不同: 对计算机视觉而言,

特征,特征不变性,尺度空间与图像金字塔

博客:blog.shinelee.me | 博客园 | CSDN 特征 在计算机视觉领域,特征是为了完成某一特定任务需要的相关信息.比如,人脸检测中,我们需要在图像中提取特征来判断哪些区域是人脸.哪些区域不是人脸,人脸验证中,我们需要在两个人脸区域分别提取特征,来判断他们是不是同一个人,如下图所示,深度神经网络最终得到一个128维的特征用于识别等任务,图片来自Openface 常用的特征包括:图像灰度or灰度.直方图.梯度.边缘.纹理.矩.SIFT.深度学习特征等等.以关键点特征为例,关键点指的

特征、特征不变性、尺度空间、图像金字塔

特征 在计算机视觉领域,特征是为了完成某一特定任务需要的相关信息.比如,人脸检测中,我们需要在图像中提取特征来判断哪些区域是人脸.哪些区域不是人脸,人脸验证中,我们需要在两个人脸区域分别提取特征,来判断他们是不是同一个人,如下图所示,深度神经网络最终得到一个128维的特征用于识别等任务. 常用的特征:图像灰度or灰度.直方图.梯度.边缘.纹理.矩.SIFT.深度学习特征等等. 以关键点特征为例,关键点指的是可以稳定出现的特殊点,如角点.局部极值点等,如上图中人脸中眼鼻口处的关键点,先检测图像中的