Spark技术内幕: Task向Executor提交的源代码解析

在上文《Spark技术内幕:Stage划分及提交源代码分析》中,我们分析了Stage的生成和提交。可是Stage的提交,仅仅是DAGScheduler完毕了对DAG的划分,生成了一个计算拓扑,即须要依照顺序计算的Stage,Stage中包括了能够以partition为单位并行计算的Task。我们并没有分析Stage中得Task是怎样生成而且终于提交到Executor中去的。

这就是本文的主题。

从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks開始,分析Stage是怎样生成TaskSet的。

假设一个Stage的全部的parent stage都已经计算完毕或者存在于cache中。那么他会调用submitMissingTasks来提交该Stage所包括的Tasks。

org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程例如以下:

  1. 首先得到RDD中须要计算的partition,对于Shuffle类型的stage。须要推断stage中是否缓存了该结果;对于Result类型的Final Stage。则推断计算Job中该partition是否已经计算完毕。
  2. 序列化task的binary。Executor能够通过广播变量得到它。每一个task执行的时候首先会反序列化。这样在不同的executor上执行的task是隔离的,不会相互影响。
  3. 为每一个须要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task
  4. 确保Task是能够被序列化的。由于不同的cluster有不同的taskScheduler,在这里推断能够简化逻辑。保证TaskSet的task都是能够序列化的
  5. 通过TaskScheduler提交TaskSet。

TaskSet就是能够做pipeline的一组全然同样的task,每一个task的处理逻辑全然同样。不同的是处理数据。每一个task负责处理一个partition。

pipeline。能够称为大数据处理的基石。仅仅有数据进行pipeline处理,才干将其放到集群中去执行。

对于一个task来说,它从数据源获得逻辑。然后依照拓扑顺序,顺序执行(实际上是调用rdd的compute)。

TaskSet是一个数据结构,存储了这一组task:

private[spark] class TaskSet(
    val tasks: Array[Task[_]],
    val stageId: Int,
    val attempt: Int,
    val priority: Int,
    val properties: Properties) {
    val id: String = stageId + "." + attempt

  override def toString: String = "TaskSet " + id
}

管理调度这个TaskSet的时org.apache.spark.scheduler.TaskSetManager。TaskSetManager会负责task的失败重试。跟踪每一个task的执行状态。处理locality-aware的调用。

具体的调用堆栈例如以下:

  1. org.apache.spark.scheduler.TaskSchedulerImpl#submitTasks
  2. org.apache.spark.scheduler.SchedulableBuilder#addTaskSetManager
  3. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend#reviveOffers
  4. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#makeOffers
  5. org.apache.spark.scheduler.TaskSchedulerImpl#resourceOffers
  6. org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor#launchTasks
  7. org.apache.spark.executor.CoarseGrainedExecutorBackend.receiveWithLogging#launchTask
  8. org.apache.spark.executor.Executor#launchTask

首先看一下org.apache.spark.executor.Executor#launchTask:

  def launchTask(
      context: ExecutorBackend, taskId: Long, taskName: String, serializedTask: ByteBuffer) {
    val tr = new TaskRunner(context, taskId, taskName, serializedTask)
    runningTasks.put(taskId, tr)
    threadPool.execute(tr) // 開始在executor中执行
  }

TaskRunner会从序列化的task中反序列化得到task。这个须要看 org.apache.spark.executor.Executor.TaskRunner#run 的实现:task.run(taskId.toInt)。而task.run的实现是:

 final def run(attemptId: Long): T = {
    context = new TaskContext(stageId, partitionId, attemptId, runningLocally = false)
    context.taskMetrics.hostname = Utils.localHostName()
    taskThread = Thread.currentThread()
    if (_killed) {
      kill(interruptThread = false)
    }
    runTask(context)
  }

对于原来提到的两种Task,即

  1. org.apache.spark.scheduler.ShuffleMapTask
  2. org.apache.spark.scheduler.ResultTask

分别实现了不同的runTask:

org.apache.spark.scheduler.ResultTask#runTask即顺序调用rdd的compute,通过rdd的拓扑顺序依次对partition进行计算:

  override def runTask(context: TaskContext): U = {
    // Deserialize the RDD and the func using the broadcast variables.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)

    metrics = Some(context.taskMetrics)
    try {
      func(context, rdd.iterator(partition, context))
    } finally {
      context.markTaskCompleted()
    }
  }

而org.apache.spark.scheduler.ShuffleMapTask#runTask则是写shuffle的结果。

  override def runTask(context: TaskContext): MapStatus = {
    // Deserialize the RDD using the broadcast variable.
    val ser = SparkEnv.get.closureSerializer.newInstance()
    val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
      ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
      //此处的taskBinary即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的

    metrics = Some(context.taskMetrics)
    var writer: ShuffleWriter[Any, Any] = null
    try {
      val manager = SparkEnv.get.shuffleManager
      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) // 将rdd计算的结果写入memory或者disk
      return writer.stop(success = true).get
    } catch {
      case e: Exception =>
        if (writer != null) {
          writer.stop(success = false)
        }
        throw e
    } finally {
      context.markTaskCompleted()
    }
  }

这两个task都不要依照拓扑顺序调用rdd的compute来完毕对partition的计算。不同的是ShuffleMapTask须要shuffle write。以供child stage读取shuffle的结果。

对于这两个task都用到的taskBinary,即为在org.apache.spark.scheduler.DAGScheduler#submitMissingTasks序列化的task的广播变量取得的。

通过上述几篇博文,实际上我们已经粗略的分析了从用户定义SparkContext開始。集群是假设为每一个Application分配Executor的,回想一下这个序列图:

还有就是用户触发某个action,集群是怎样生成DAG,假设将DAG划分为能够成Stage,已经Stage是怎样将这些能够pipeline执行的task提交到Executor去执行的。当然了,具体细节还是很值得推敲的。

以后的每一个周末。都会奉上某个细节的实现。

歇息了。明天又会開始忙碌的一周。

原文地址:https://www.cnblogs.com/llguanli/p/8601055.html

时间: 2024-10-17 06:31:59

Spark技术内幕: Task向Executor提交的源代码解析的相关文章

Spark技术内幕: Task向Executor提交的源码解析

从org.apache.spark.scheduler.DAGScheduler#submitMissingTasks开始,分析Stage是如何生成TaskSet的. 如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks. org.apache.spark.scheduler.DAGScheduler#submitMissingTasks的计算流程如下: 首先得到RDD中需要计

Spark技术内幕:Worker源码与架构解析

首先通过一张Spark的架构图来了解Worker在Spark中的作用和地位: Worker所起的作用有以下几个: 1. 接受Master的指令,启动或者杀掉Executor 2. 接受Master的指令,启动或者杀掉Driver 3. 报告Executor/Driver的状态到Master 4. 心跳到Master,心跳超时则Master认为Worker已经挂了不能工作了 5. 向GUI报告Worker的状态 说白了,Worker就是整个集群真正干活的.首先看一下Worker重要的数据结构: v

Spark技术内幕:Client,Master和Worker 通信源码解析

Spark的Cluster Manager可以有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并最终完成计算.具体阐述可以阅读<Spark:大数据的电花火石!>. 那么Standalone模式下,Client,Master和Worker是如何进行通信,注册并开启服务的呢? 1. node之间的IP

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现

如果Spark的部署方式选择Standalone,一个采用Master/Slaves的典型架构,那么Master是有SPOF(单点故障,Single Point of Failure).Spark可以选用ZooKeeper来实现HA. ZooKeeper提供了一个Leader Election机制,利用这个机制可以保证虽然集群存在多个Master但是只有一个是Active的,其他的都是Standby,当Active的Master出现故障时,另外的一个Standby Master会被选举出来.由于

Spark技术内幕:Master的故障恢复

Spark技术内幕:Master基于ZooKeeper的High Availability(HA)源码实现  详细阐述了使用ZK实现的Master的HA,那么Master是如何快速故障恢复的呢? 处于Standby状态的Master在接收到org.apache.spark.deploy.master.ZooKeeperLeaderElectionAgent发送的ElectedLeader消息后,就开始通过ZK中保存的Application,Driver和Worker的元数据信息进行故障恢复了,它

Spark技术内幕:一个图搞定Spark到底有多少行代码

Spark1.0.0发布一个多月了,那么它有多少行代码(Line of Code, LOC)? 注:代码统计未包含测试,sample. Spark技术内幕:一个图搞定Spark到底有多少行代码

Spark技术内幕:Shuffle Map Task运算结果的处理

Shuffle Map Task运算结果的处理 这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的:还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据. Executor端的处理 在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.sche

我的第一本著作:Spark技术内幕上市!

现在各大网站预售中,估计9月底就能到货发售! 京东:http://item.jd.com/11770787.html 当当:http://product.dangdang.com/23776595.html 亚马逊:http://www.amazon.cn/SparkInternals 前言和目录附上,以便有需要了解的同学: 诞生于2005年的Hadoop解决了大数据的存储和计算问题,已经成为大数据处理的事实标准.但是,随着数据规模的爆炸式增长和计算场景的丰富细化,使得Hadoop越来越难以满足

Spark技术内幕:Client,Master和Worker 通信源代码解析

Spark的Cluster Manager能够有几种部署模式: Standlone Mesos YARN EC2 Local 在向集群提交计算任务后,系统的运算模型就是Driver Program定义的SparkContext向APP Master提交,有APP Master进行计算资源的调度并终于完毕计算.具体阐述能够阅读<Spark:大数据的电花火石!>. 那么Standalone模式下,Client.Master和Worker是怎样进行通信,注冊并开启服务的呢? 1. node之间的RP