[poj3904]Sky Code_状态压缩_容斥原理

Sky Code poj-3904

    题目大意:给你n个数,问能选出多少满足题意的组数。

    注释:如果一个组数满足题意当且仅当这个组中有且只有4个数,且这4个数的最大公约数是1,$1\le n\le 10^4$。

      想法:我们显然可以知道4个数是可以不用两两互质的,所以正面计算难度较大,我们考虑从反面考虑。我们通过计算所有gcd不为1的组数,用总组数相减即可。然后,我们发现一个不为0的gcd显然可以被组中的任意一个数整除,所以我们可以进行容斥。只需要枚举gcd的约数个即可。计算的过程我们用状态压缩实现。

    最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 10005
using namespace std;
typedef long long ll;
ll a[10010];//记录单个数的质因数
ll cnt;//记录单个数的质因数个数
ll ans[10010][2];//ans[i][0]表示包含i这个因子的数的个数,ans[i][1]表示i的质因子个数
ll Calc(ll x)//计算C[n][4]
{
	return x*(x-1)*(x-2)*(x-3)/24;
}
void separate(ll x)//分解质因数,由于我们在后面需要用cnt进行状态压缩,所以a数组从0开始记录
{
	for(int i=2;i*i<=x;i++)
	{
		if(x%i==0)
		{
			a[cnt]=i;
			cnt++;
			while(x%i==0)
			{
				x/=i;
			}
		}
	}
	if(x>1) a[cnt++]=x;
}
void dispose(ll x)
{
	cnt=0;
	separate(x);
	for(int i=1;i<(1<<cnt);i++)//通过枚举当前全集来统计桶
	{
		ll flag=0,middle=1;
		for(int j=0;j<cnt;j++)
		{
			if(i&(1<<j))
			{
				flag++;
				middle*=a[j];
			}
		}
		ans[middle][0]++;
		ans[middle][1]=flag;
	}
}
int main()
{
	ll n;
	while(~scanf("%lld",&n))
	{
		memset(ans,0,sizeof ans);
		ll x;
		for(int i=1;i<=n;i++)
		{
			scanf("%lld",&x);
			dispose(x);
		}
		ll answer=Calc(n);
		for(int i=2;i<=maxn/4;i++)
		{
			if(ans[i][0])//Important
			{
				if(1&ans[i][1]) answer-=Calc(ans[i][0]);//如果是偶数个质因子
				else answer+=Calc(ans[i][0]);//如果是奇数个质因子
			}
		}
		// puts("Fuck");
		printf("%lld\n",answer);//输出答案即可
	}
	return 0;
}

    小结:如果一个问题极其复杂,我们不妨反其道而行之。容斥原理就是一例。

原文地址:https://www.cnblogs.com/ShuraK/p/8604165.html

时间: 2024-10-11 03:03:50

[poj3904]Sky Code_状态压缩_容斥原理的相关文章

状态压缩与容斥原理

状态压缩的意思其实是挺简单的,就是以前在暴力解题时要开一个好大好大的数组,结果很不幸,最后发现没办法了,空间消耗太大,写法过于复杂. 然后如果使用了状态压缩之后就会发现,使用变得方便起来,而且真正消耗的空间相对于以前的数组基本上是可以忽略不计的. 但是这个还是有一定的缺陷的,因为二进制保存的长度有限,并不是说能够保存多大,大概的一个数量是20以内都没有问题,超过后就得考虑换一换方法了.这里将使用的方法的代码都保留下来. #define LL long long LL getans(LL num,

HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 } + sum{ 整除三个的数 }………………所以是奇加偶减,而整除 k 个数的数可以表示成 lcm(A1,A2,…,Ak) 的倍数的形式.所以算出最小公倍数, //HDU 1796 #include <cstdio> #include <iostream> #include <

HDU 5768 Lucky7 (容斥原理 + 中国剩余定理 + 状态压缩 + 带膜乘法)

题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同时满足余膜条件的最小整数x,x在(1,M)之间由唯一值,M是各个除数的乘积,所有符合条件的解为ans = x+k*M,可以知道在[1,R]这个区间内,有(M+R-x)/ M个k符合条件,然后在运算中为了防止溢出,所以使用了带膜乘法,就是将乘数转化为二进制,通过位移运算符,在中间过程中不断的取膜(看代

HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由于得到每张卡片的状态不知道,所以用状态压缩,dp[i] 表示这个状态时,要全部收齐卡片的期望. 由于有可能是什么也没有,所以我们要特殊判断一下.然后就和剩下的就简单了. 另一个方法就是状态压缩+容斥,同样每个状态表示收集的状态,由于每张卡都是独立,所以,每个卡片的期望就是1.0/p,然后要做的就是要去重,既然

【宽度优先搜索】神奇的状态压缩 CodeVs1004四子连棋

一.写在前面 其实这是一道大水题,而且还出在了数据最水的OJ上,所以实际上这题并没有什么难度.博主写这篇blog主要是想写下一个想法--状态压缩.状态压缩在记录.修改状态以及判重去重等方面有着极高的(←_←词穷了,诸位大致理解一下就好)效率.博主原本打算在blog介绍一种DP--状态压缩型动态规划,但动笔(键盘??)前,博主突然想起自己前些年写过的一道广搜题,当时在判重方面冥思苦想想出了一种类似状态压缩的方法,开心了好久,于是在此先抛砖引玉为状压DP做个铺垫. 二.题目 Description

Hdu 4336 Card Collector (状态概率DP|容斥原理)

详细的题目大意与解析大家参考一下kuangbin的文章. kuangbin链接 这边说一下自己对于kuangbin代码以及容斥原理位元素枚举的理解与解释,希望对大家有所帮助. 状态DP AC代码:状态压缩的思想我就不赘述了,我也只是略懂,这边仅仅分析一下状态方程 由于量比较多,我这边有的便用文字代替,有利于描述. dp[i]表示i状态达到满状态(即收集满n个物品,以下称满状态)所需要的期望. 那么i状态当中收集了x的物品,剩余n-x个物品没有收集 那么dp[i]=p*dp[i]+p2*dp[i2

HDU 3247 Resource Archiver (AC自动机 + BFS + 状态压缩DP)

题目链接:Resource Archiver 解析:n个正常的串,m个病毒串,问包含所有正常串(可重叠)且不包含任何病毒串的字符串的最小长度为多少. AC自动机 + bfs + 状态压缩DP 用最短路预处理出状态的转移.可以优化很多 AC代码: #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #include <queue> using n

胜利大逃亡(续)(状态压缩bfs)

胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7357    Accepted Submission(s): 2552 Problem Description Ignatius再次被魔王抓走了(搞不懂他咋这么讨魔王喜欢)……这次魔王汲取了上次的教训,把Ignatius关在一个n*m的地牢里,并在地牢的某些地方安装了带

uva 818(dfs+图+状态压缩)

题意:有n个环,编号从1到n,给出了一些环环相扣的情况,比如给a和b表示a和b两个环的扣在一起的,每个环都是可以打开的,问最少打开多少个环,然后再扣好,可以让所有的环成为一条链. 题解:状态压缩把所有的打开环的情况枚举出来,然后拿去判断是否成立,更新打开环后的图g[i][j],和每个点的度数,不成立有三种情况,1.计算没有打开的环的度数,如果大于2说明不会有链,2.把没有打开环拿去dfs,访问过就vis[i]++,如果vis[i]>=2说明存在环,3.如果打开的环数num + 1小于链的数量,说