【bzoj3173】最长上升子序列

Portal --> bzoj3173

Solution

  感觉自己需要智力康复qwq

  首先题目给的这个序列肯定是一个\(1-n\)的排列,并且插入的顺序是从小到大

  仔细思考一下会发现如果知道了最终的序列,问题就比较好解决了,这里提供一种用线段树的做法:

  如果知道了最终的序列,记数字\(i\)在该序列中的位置为\(loc[i]\),那么我们按照\(i\)从小到大的顺序,查询结尾在\([1,loc[i])\)的这段位置中的最长上升子序列的最大值\(mx\),并将\(mx+1\)作为以\(loc[i]\)位置为结尾的答案,插入到线段树中\(loc[i]\)对应的节点里,复杂度是\(O(nlogn)\)

  然后现在的问题是怎么求最终的序列

  这个可以用平衡树来写,不过其实也可以用线段树来写

  考虑反过来确定每一个数在最终序列中的位置,因为是反过来考虑的,所以一开始的时候每一个位置都有一个数,然后我们根据读入的插入位置,按照\(n-1\)的顺序,找到当前这个数的位置,然后将它删掉(也就是对应的线段树节点的\(sum-1\))

?  具体一点就是比如当前考虑到第\(i\)个数,读入这个数应该要插入在\(a[i]\)的位置后面,也就是应该在当前这个序列的第\(a[i]+1\)个位置,那么找到这个位置,然后把这个位置删掉,这样就可以得到还没有插入这个数之前的序列的位置集合了,这部分的复杂度也是\(O(nlogn)\)的

?  然后就十分愉快地做完啦

  

  代码大概长这个样子

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=100010,SEG=MAXN*4;
namespace Seg{/*{{{*/
    int ch[SEG][2],sum[SEG],mx[SEG];
    int n,tot;
    void pushup(int x){
        sum[x]=sum[ch[x][0]]+sum[ch[x][1]];
        mx[x]=max(mx[ch[x][0]],mx[ch[x][1]]);
    }
    void _build(int x,int l,int r){
        sum[x]=0; mx[x]=0;
        if (l==r){sum[x]=0; return;}
        int mid=l+r>>1;
        ch[x][0]=++tot; _build(ch[x][0],l,mid);
        ch[x][1]=++tot; _build(ch[x][1],mid+1,r);
        pushup(x);
    }
    void build(int _n){n=_n; tot=1; _build(1,1,n);}
    void _update(int x,int d,int lx,int rx,int delta){
        if (lx==rx) {sum[x]+=delta;mx[x]+=delta;return;}
        int mid=lx+rx>>1;
        if (d<=mid) _update(ch[x][0],d,lx,mid,delta);
        else _update(ch[x][1],d,mid+1,rx,delta);
        pushup(x);
    }
    void update(int d,int delta){_update(1,d,1,n,delta);}
    int _query_mx(int x,int l,int r,int lx,int rx){
        if (l<=lx&&rx<=r) return mx[x];
        int mid=lx+rx>>1,ret=0;
        if (l<=mid) ret=max(ret,_query_mx(ch[x][0],l,r,lx,mid));
        if (r>mid) ret=max(ret,_query_mx(ch[x][1],l,r,mid+1,rx));
        return ret;
    }
    int query(int l,int r){return _query_mx(1,l,r,1,n);}
    int _get_loc(int x,int lx,int rx,int k){
        if (lx==rx) return lx;
        int mid=lx+rx>>1;
        if (sum[ch[x][0]]>=k) return _get_loc(ch[x][0],lx,mid,k);
        else return _get_loc(ch[x][1],mid+1,rx,k-sum[ch[x][0]]);
    }
    int get_loc(int k){return _get_loc(1,1,n,k);}
};/*}}}*/
int loc[MAXN],a[MAXN],b[MAXN];
int n,m,ans;

int main(){
#ifndef ONLINE_JUDGE
    freopen("a.in","r",stdin);
#endif
    scanf("%d",&n);
    for (int i=1;i<=n;++i) scanf("%d",b+i),++b[i];
    Seg::build(n);
    for (int i=1;i<=n;++i) Seg::update(i,1);
    for (int i=n;i>=1;--i){
        loc[i]=Seg::get_loc(b[i]);
        Seg::update(loc[i],-1);
    }
    for (int i=1;i<=n;++i) a[loc[i]]=i;

    Seg::build(n);
    ans=0;
    int tmp;
    for (int i=1;i<=n;++i){
        if (loc[i]>1)
            tmp=Seg::query(1,loc[i]-1);
        else
            tmp=0;
        Seg::update(loc[i],tmp+1);
        ans=max(ans,tmp+1);
        printf("%d\n",ans);
    }
}

原文地址:https://www.cnblogs.com/yoyoball/p/9190688.html

时间: 2024-10-29 16:27:27

【bzoj3173】最长上升子序列的相关文章

bzoj3173 最长上升子序列 树状数组

链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3173 题意:向序列中动态插入$1~n$排列元素,求出插入每个元素后最长上升子序列长度. 如Claris所言,面对这种数据结构,必有高论.如果只想着数据结构,我们可以通过平衡树动态维护序列,同时使用树状数组计算最长上升子序列. 但是我们不是猩猩不是数据结构狂人,我们毕竟还是要本着能不上树就不上树能少用数据结构就少用的原则来设计算法的. 重新考虑这个题目.本题没有要求强制在线,于是我们把整个操作

[bzoj3173]最长上升子序列_非旋转Treap

最长上升子序列 bzoj-3173 题目大意:有1-n,n个数,第i次操作是将i加入到原有序列中制定的位置,后查询当前序列中最长上升子序列长度. 注释:1<=n<=10,000,开始序列为空. 想法:显然,我们发现,我每次加入的数一定是当前序列中最大的,所以,刚刚加入的i,要么是当前序列中LIS的结尾,要么不属于LIS.根据这个性质,我们想到:在Treap中维护这样的性质,就是维护每个数加入节点的编号.然后,我们更新新节点的方式就是它的左子树和右子树的LIS取最大+1.其实最重要的就是如何加入

[BZOJ3173][Tjoi2013]最长上升子序列

试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 输入 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) 输出 N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少. 输入示例 3 0 0 2 输出示例 1 1 2 数据规模及约定 100%的数据 n<=

BZOJ3173: [Tjoi2013]最长上升子序列 Treap 平衡树

Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) Output N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少. Sample Input 3 0 0 2 Sample Outp

【bzoj3173】[Tjoi2013]最长上升子序列

Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一个整数N,表示我们要将1到N插入序列中,接下是N个数字,第k个数字Xk,表示我们将k插入到位置Xk(0<=Xk<=k-1,1<=k<=N) Output N行,第i行表示i插入Xi位置后序列的最长上升子序列的长度是多少. Sample Input 3 0 0 2 Sample Outp

14-高效求最长公共子序列(二维数组存不下)

/*                                   See LCS again时间限制:1000 ms  |  内存限制:65535 KB难度:3 描述 There are A, B two sequences, the number of elements in the sequence is n.m; Each element in the sequence are different and less than 100000. Calculate the length

POJ 2533 - Longest Ordered Subsequence(最长上升子序列) 题解

此文为博主原创题解,转载时请通知博主,并把原文链接放在正文醒目位置. 题目链接:http://poj.org/problem?id=2533 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK)

最长公共子序列的代码实现

关于最长公共子序列(LCS)的相关知识,http://blog.csdn.net/liufeng_king/article/details/8500084 这篇文章讲的比较好,在此暂时不再详说. 以下是我代码实现两种方式:递归+递推: 1 #include <bits/stdc++.h> 2 using namespace std; 3 int A[100]; 4 int B[100]; 5 6 //int B[]={2,3,5,6,9,8,4}; 7 int d[100][100]={0};

HDU 3998 Sequence (最长递增子序列+最大流SAP,拆点法)经典

Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1666    Accepted Submission(s): 614 Problem Description There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequ