Python——决策树实战:california房价预测

Python——决策树实战:california房价预测

编译环境:Anaconda、Jupyter Notebook

首先,导入模块:

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 %matplotlib inline

接下来导入数据集:

1 from sklearn.datasets.california_housing import fetch_california_housing
2 housing = fetch_california_housing()
3 print(housing.DESCR)  #description

使用sklearn自带的数据集california_housing,详情见:Python——sklearn提供的自带的数据集

运行结果:

California housing dataset.

The original database is available from StatLib

    http://lib.stat.cmu.edu/datasets/

The data contains 20,640 observations on 9 variables.

This dataset contains the average house value as target variable
and the following input variables (features): average income,
housing average age, average rooms, average bedrooms, population,
average occupation, latitude, and longitude in that order.

References
----------

Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.

查看一下数据:

1 housing.data.shape
(20640, 8)
1 housing.data[0]
array([   8.3252    ,   41.        ,    6.98412698,    1.02380952,
        322.        ,    2.55555556,   37.88      , -122.23      ])

树模型参数:

  • 1.criterion gini or entropy
  • 2.splitter best or random 前者是在所有特征中找最好的切分点 后者是在部分特征中(数据量大的时候)
  • 3.max_features None(所有),log2,sqrt,N 特征小于50的时候一般使用所有的
  • 4.max_depth 数据少或者特征少的时候可以不管这个值,如果模型样本量多,特征也多的情况下,可以尝试限制下
  • 5.min_samples_split 如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
  • 6.min_samples_leaf 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝,如果样本量不大,不需要管这个值,大些如10W可是尝试下5
  • 7.min_weight_fraction_leaf 这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。
  • 8.max_leaf_nodes 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制具体的值可以通过交叉验证得到。
  • 9.class_weight 指定样本各类别的的权重,主要是为了防止训练集某些类别的样本过多导致训练的决策树过于偏向这些类别。这里可以自己指定各个样本的权重如果使用“balanced”,则算法会自己计算权重,样本量少的类别所对应的样本权重会高。
  • 10.min_impurity_split 这个值限制了决策树的增长,如果某节点的不纯度(基尼系数,信息增益,均方差,绝对差)小于这个阈值则该节点不再生成子节点。即为叶子节点 。
  • n_estimators:要建立树的个数

接下来首先把算法实例化出来,然后传参进行训练。

1 from sklearn import tree
2 dtr = tree.DecisionTreeRegressor(max_depth = 2)
3 # 使用两列的特征进行训练 即传两个参数x, y
4 dtr.fit(housing.data[:, [6, 7]], housing.target)

输出:

DecisionTreeRegressor(criterion=‘mse‘, max_depth=2, max_features=None,
           max_leaf_nodes=None, min_impurity_split=1e-07,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, presort=False, random_state=None,
           splitter=‘best‘)

为了将决策树可视化,首先安装graphviz。export_graphviz出口也支持多种美学选项,包括可以通过类着色节点(或值回归)和如果需要的话使用显式的变量和类名称。IPython笔记本还可以使用Image()函数内联渲染这些图:

 1 #要可视化显示 首先需要安装 graphviz   http://www.graphviz.org/Download..php
 2 dot_data =  3     tree.export_graphviz(
 4         dtr,
 5         out_file = None,
 6         feature_names = housing.feature_names[6:8],
 7         filled = True,
 8         impurity = False,
 9         rounded = True
10     )

graphviz及pydotplus安装步骤 :Python——graphviz及pydotplus安装步骤

安装了Python模块pydotplus后,可以直接在Python中生成PNG文件(或任何其他支持的文件类型):

1 #pip install pydotplus
2 import pydotplus
3 graph = pydotplus.graph_from_dot_data(dot_data)
4 graph.get_nodes()[7].set_fillcolor("#FFF2DD")
5 graph.write_png("graph.png")
6 from IPython.display import Image
7 Image(graph.create_png())

将数据集进行划分,划分为训练集和测试集,并进行训练、验证

1 from sklearn.model_selection import train_test_split
2 x_train, x_test, y_train, y_test = 3     train_test_split(housing.data, housing.target, test_size = 0.1, random_state = 42)
4 dtr = tree.DecisionTreeRegressor(random_state=42)
5 dtr.fit(x_train, y_train)
6
7 dtr.score(x_test, y_test)

结果:

0.637318351331017

使用随机森林:

1 from sklearn.ensemble import RandomForestRegressor
2 rfr = RandomForestRegressor( random_state = 42)
3 rfr.fit(x_train, y_train)
4 rfr.score(x_test, y_test)

结果:

0.79086492280964926

用交叉验证选取参数:

1 from sklearn.grid_search import GridSearchCV
2
3 # 一般把参数写成字典的格式:
4 tree_param_grid = { ‘min_samples_split‘: list((3, 6, 9)),‘n_estimators‘: list((10,50,100))}
5
6 # 第一个参数是模型,第二个参数是待选的参数,cv:进行几次交叉验证
7 grid = GridSearchCV(RandomForestRegressor(), param_grid = tree_param_grid, cv = 5)
8 grid.fit(x_train, y_train)
9 grid.grid_scores_, grid.best_params_, grid.best_score_

结果为:

([mean: 0.78795, std: 0.00337, params: {‘min_samples_split‘: 3, ‘n_estimators‘: 10},
  mean: 0.80463, std: 0.00308, params: {‘min_samples_split‘: 3, ‘n_estimators‘: 50},
  mean: 0.80732, std: 0.00448, params: {‘min_samples_split‘: 3, ‘n_estimators‘: 100},
  mean: 0.78535, std: 0.00506, params: {‘min_samples_split‘: 6, ‘n_estimators‘: 10},
  mean: 0.80446, std: 0.00399, params: {‘min_samples_split‘: 6, ‘n_estimators‘: 50},
  mean: 0.80688, std: 0.00424, params: {‘min_samples_split‘: 6, ‘n_estimators‘: 100},
  mean: 0.78754, std: 0.00552, params: {‘min_samples_split‘: 9, ‘n_estimators‘: 10},
  mean: 0.80321, std: 0.00487, params: {‘min_samples_split‘: 9, ‘n_estimators‘: 50},
  mean: 0.80553, std: 0.00389, params: {‘min_samples_split‘: 9, ‘n_estimators‘: 100}],
 {‘min_samples_split‘: 3, ‘n_estimators‘: 100},
 0.8073224957136084)

使用得到的参数重新训练随机森林:

1 rfr = RandomForestRegressor( min_samples_split=3,n_estimators = 100,random_state = 42)
2 rfr.fit(x_train, y_train)
3 rfr.score(x_test, y_test)

结果为:

0.80908290496531576
1 pd.Series(rfr.feature_importances_, index = housing.feature_names).sort_values(ascending = False)

结果为:

MedInc        0.524257
AveOccup      0.137947
Latitude      0.090622
Longitude     0.089414
HouseAge      0.053970
AveRooms      0.044443
Population    0.030263
AveBedrms     0.029084
dtype: float64

原文地址:https://www.cnblogs.com/yxh-amysear/p/9471513.html

时间: 2024-08-24 21:38:12

Python——决策树实战:california房价预测的相关文章

【Machine Learn】决策树案例:基于python的商品购买能力预测系统

决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(

python机器学习实战(二)

python机器学习实战(二) 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7159775.html 前言 这篇notebook是关于机器学习监督学习中的决策树算法,内容包括决策树算法的构造过程,使用matplotlib库绘制树形图以及使用决策树预测隐形眼睛类型. 操作系统:ubuntu14.04(win也ok)   运行环境:anaconda-python2.7-jupyter notebook    参考书籍:机器学习

python机器学习实战(四)

python机器学习实战(四) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7364317.html 前言 这篇notebook是关于机器学习中logistic回归,内容包括基于logistic回归和sigmoid分类,基于最优化方法的最佳系数确定,从疝气病症预测病马的死亡率.操作系统:ubuntu14.04  运行环境:anaconda-python2.7-jupyter notebook 参考书籍:机器学习实战和源码   noteb

Python机器学习实战<二>:机器学习概述

1.机器学习的真实含义是利用数据来彰显数据背后的真实含义. 2.机器学习的一般用例:人脸识别.手写数字识别.垃圾邮件过滤.产品推荐等等. 3.机器学习的主要任务是分类,即将实例数据划分到合适的分类中.另一项任务是回归,主要用于预测数值型数据.分类和回归属于监督学习,之所以称为监督学习,是因为这类算法必须知道预测什么,即目标的分类信息.另一种机器学习方式是无监督学习,此时数据没有类别信息,也没有给定的目标.在无监督学习中,将数据集合分成由类似对象组成的多个类成为聚类,将寻找数据统计值的过程称为密度

python机器学习实战(一)

python机器学习实战(一) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7140974.html  前言 这篇notebook是关于机器学习中监督学习的k近邻算法,将介绍2个实例,分别是使用k-近邻算法改进约会网站的效果和手写识别系统.操作系统:ubuntu14.04    运行环境:anaconda-python2.7-notebook    参考书籍:机器学习实战      notebook  writer ----方阳  k-

02-08 多项式回归(波士顿房价预测)

目录 多项式回归(波士顿房价预测) 一.导入模块 二.获取数据 三.训练模型 3.1 报告决定系数 四.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 多项式回归(波士顿房价预测) 一.导入模块 import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplot

02-06 普通线性回归(波斯顿房价预测)+特征选择

目录 普通线性回归(波士顿房价预测) 一.导入模块 二.获取数据 2.1 打印数据 三.特征选择 3.1 散点图矩阵 3.2 关联矩阵 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 普通线性回归(波士顿房价预测) 一.导入模块 import pandas as pd import numpy as np import matplotlib.

02-11 RANSAC算法线性回归(波斯顿房价预测)

目录 RANSAC算法线性回归(波斯顿房价预测) 一.RANSAC算法流程 二.导入模块 三.获取数据 四.训练模型 五.可视化 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ RANSAC算法线性回归(波斯顿房价预测) 虽然普通线性回归预测结果总体而言还是挺不错的,但是从数据上可以看出数据集中有较多的离群值,因此本节将使用RANSAC算法针对离群值做处理,即根据数据

02-07 多元线性回归(波士顿房价预测)

目录 多元线性回归(波士顿房价预测) 一.导入模块 二.获取数据 三.训练模型 四.可视化 五.均方误差测试 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ 多元线性回归(波士顿房价预测) 一.导入模块 import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager im